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The Soil Management Assessment Framework:
A Quantitative Soil Quality Evaluation Method

Susan S. Andrews,* Douglas L. Karlen, and Cynthia A. Cambardella

ABSTRACT

Erosion rates and annual soil loss tolerance (T) values in evalua-
tions of soil management practices have served as focal points for soil
quality (SQ) research and assessment programs for decades. Our ob-
jective is to enhance and extend current soil assessment efforts by
presenting a framework for assessing the impact of soil management
practices on soil function. The tool consists of three steps: indicator se-
lection, indicator interpretation, and integration into an index. The
tool’s framework design allows researchers to continually update and
refine the interpretations for many soils, climates, and land use prac-
tices. The tool was demonstrated using data from case studies in Geor-
gia, Iowa, California, and the Pacific Northwest (WA, ID, OR). Using
an expert system of decision rules as an indicator selection step suc-
cessfully identified indicators for the minimum data set (MDS) in the
case study data sets. In the indicator interpretation step, observed in-
dicator data were transformed into unitless scores based on site-spe-
cific algorithmic relationships to soil function. The scored data resulted
in scientifically defensible and statistically different treatment means
in the four case studies. The efficacy of the indicator interpretation step
was evaluated with stepwise regressions using scored and observed in-
dicators as independent variables and endpoint data as iterative de-
pendent variables. Scored indicators usually had coefficients of deter-
mination (R?) that were similar or greater than those of the observed
indicator values. In some cases, the R? values for indicators and end-
point regressions were higher when examined for individual treat-
ments rather than the entire data set. This study demonstrates signifi-
cant progress toward development of a SQ assessment framework for
adaptive soil resource management or monitoring that is transferable
to a variety of climates, soil types, and soil management systems.

HIGH RATES OF SOIL EROSION, losses of organic matter,
reductions in fertility and productivity, chemical
and heavy metal contamination, and degradation of air
and water quality have sparked interest in the concept of
soil quality (SQ) and its assessment (Larson and Pierce,
1991; National Research Council, 1993; Doran and Par-
kin, 1994; Karlen et al., 2001). Although it has a variety
of (sometimes conflicting) definitions in the current lit-
erature, SQ is most often defined as “the capacity of the
soil to function” (Karlen et al., 1997). Some important
soil functions (or ecosystem services) include: water flow
and retention, solute transport and retention, physical
stability and support; retention and cycling of nutrients;
buffering and filtering of potentially toxic materials; and
maintenance of biodiversity and habitat (Daily et al.,
1997). The term dynamic SQ refers to the effects of hu-
man use and management on these soil functions (Sey-
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bold et al., 1998). Because improper management can
lead to deleterious changes in soil function, a need for
tools and methods to assess and monitor SQ was recog-
nized (e.g., Doran and Jones, 1996).

Although some misconceptions exist, the recent em-
phasis on soil function (and dynamic soil quality) is not
intended to detract from the importance of soil taxon-
omy, where inherent soil properties, resulting from the
five soil forming factors (Jenny, 1941), and land use suit-
ability are emphasized. Soil quality uses taxonomy as a
foundation (Karlen et al., 2003). The specific definition
of soil quality for a particular soil is dependent on its
inherent capabilities, the intended land use, and the man-
agement goals. For instance, optimum levels of organic
matter (and other soil properties) will differ depending
on the condition under which the soils formed, leading
to variation in potential functioning. The use-dependence
of the SQ concept can be illustrated simply: the func-
tions, properties, and processes necessary to hold up a
physical structure are not the same as those needed to
grow a crop. More subtly, the soil qualities (functions or
properties) critical for environmentally benign land ap-
plication of animal waste are not identical to those for
maximized production—even within the same field or
under the same crop.

As with defining SQ, assessing SQ also requires con-
sideration of taxonomy, land use and management goals.
Appropriate SQ assessment measures a soil’s changes
in function in response to management, within the con-
text of what the soil is being asked to do, its inherent prop-
erties, and environmental influences, such a temperature
and precipitation. The target or optimum soil quality is
not one standard for the USA or the world; instead, it
is a series of thresholds defined by limiting factors and
user needs.

Indicators of SQ can be defined loosely as those soil
properties and processes that have greatest sensitivity
to changes in soil function. Doran and Parkin (1996)
emphasized that SQ indicators should correlate well with
ecosystem processes, integrate soil properties and pro-
cesses, be accessible to many users, sensitive to manage-
ment and climate, and, whenever possible, be components
of existing databases. Indicator groups or MDSs, used
to indirectly measure soil function, must be sufficiently
diverse to represent the chemical, biological, and physi-
cal properties and processes of complex systems (Gre-
gorich et al., 1994; Doran and Parkin, 1996; Snakin et al.,

Abbreviations: AGG, water-stable aggregates; AWC, plant-available
water-holding capacity; Dy, bulk density; EC, electrical conductivity;
MBC, microbial biomass C; MDS, minimum data set; NRI, Natural
Resources Inventory; PMN, potentially mineralizable N; R?, coeffi-
cient of determination; SMAF, Soil Management Assessment Frame-
work; SOM, soil organic matter; SQ, soil quality; T, soil loss tolerance;
SAR, sodium adsorption ratio; TOC, total organic C; WS, watershed.
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1996; Karlen et al., 2003). While the concept of indirect
measures (indicators) has been widely used to monitor
water quality (Karr, 1981), the idea was first applied to
soil function through pedotransfer functions (Larson
and Pierce, 1991). Because there are so many competing
uses and inherent limitations for the world’s soils, the
components of a MDS are not universal: the appropriate
indicators for indirect assessment of soil function are
determined by which functions are critical to meet man-
agement goals (Harris et al., 1996; Andrews et al., 2002a).

Larson and Pierce (1991) argued that the measure of
SQ in agriculture should no longer be limited to pro-
ductivity goals, inferring that emphasizing productivity
may have contributed to soil degradation in the past.
The design of any generalized assessment tool for SQ
must be flexible enough to capture multiple soil func-
tions in various combinations. This must be accomplished
with respect to the broader goals of sustaining plant and
animal productivity, maintaining or enhancing water and
air quality, and supporting human health and habitation
(Karlen et al., 1997). In addition, a SQ assessment tool
needs to interpret the indicators of those functions in
terms of the inherent abilities of the soil and climate in
which the assessment takes place. Such a tool would ad-
dress most of the misgivings and misconceptions among
those who have reservations regarding the SQ concept
(e.g., Sojka et al., 2003), by using quantitative laboratory
analyses, providing site-specific interpretations, and eval-
uating and understanding management effects on a spe-
cific soil resource with respect to multiple endpoints
(which are outcomes driven by management or societal
goals, e.g., productivity and environmental quality).

The objectives for this current work were (i) to design
a tool to assess the relative effects of management on
SQ based on indicator measurement, and (ii) to test the
framework for transferability across soils, climate, and
management practices.

This paper outlines a three-step framework (without
describing details of the computer code), called the Soil
Management Assessment Framework (SMAF), and im-
parts the results of its application to four case studies
that vary in climate, management practice, spatial extent,
and soil type. The case study demonstration shows how
the framework interprets soil indicator data and com-
putes relative SQ indices to compare management prac-
tices or monitor change over time. We call on other re-
searchers to continue to test, critique, and refine the
SMAF as a tool for sustainable soil management.

MATERIALS AND METHODS
Soil Management Assessment Framework Design

The SMAF is designed to follow three basic steps: indicator
selection, indicator interpretation, and integration into a SQ
index value (Andrews, 1998) (Fig. 1). An object-oriented Java
version of the SMAF is currently under development. An
Excel! (Microsoft Inc., Redmond, WA) spreadsheet containing

"Mention of a trademark, proprietary product, or vendor does not
constitute a guarantee or warranty of the product by the USDA and
does not imply its approval to the exclusion of other products or
vendors that may also be suitable.

1. Indicator Selection
Minirnum Data Set

1 1
1 1

2. Inter etatlon

score H score scorc score score
\, ntegrati

Index Value

Fig. 1. Conceptual framework for the soil management assessment
tool (after Andrews, 1998).

the second and third steps is available on request from the
authors. It is not within the scope of this paper to describe the
computer code in detail but we do describe the driving logic
statements and algorithms used.

Indicator Selection

The SMAF uses a series of decision rules (Bellocchi et al.,
2002; Schadt et al., 2002), in a database format, to generate
a list of suggested MDS indicators from the more than 80
integrative measurements related to ecosystem processes and
function currently residing in the database. The decision rules
use the management goals for the site, associated soil func-
tions, as well as other site-specific factors, like region or crop
sensitivity, as selection criteria. These rules tables serve as an
expert system to select appropriate SQ indicators (Andrews
et al., 2002a).

To generate a list of suggested indicators, a user of the tool
replies to a number of questions, one of which pertains to the
user’s primary management goal for the site. A table in the
database identifies the critical functions associated with each
management goal: maximize productivity, waste recycling, or
environmental protection (Table 1). For example, if the user
chooses waste recycling as the primary management goal, the
program identifies the functions nutrient cycling, water rela-
tions, filtering and buffering, and resistance and resilience as
important to that goal. There are currently three management
goals and six functions identified in the program’s database but
more can easily be added if additional land uses are targeted.

In a second database table, a list of indicators is associated
with each identified soil function. The list is further narrowed
using several additional criteria: climate, crop or rotation, till-
age practice(s), assessment purpose, and inherent soil proper-
ties (such as organic matter class, texture, slope, degree of wea-
thering, or pH). Each indicator has a unique combination of
goals, functions, and additional criteria that must be satisfied
for it to be suggested as a MDS indicator. Table 2 shows a sub-
set of potential indicators for the soil functions and associated
management goals. The entire database includes 81 indicators
and 169 selection rules, which are combinations of functions
and other criteria for selection, making an average of approxi-
mately two selection scenarios per indicator. The database struc-
ture of the decision rules program for Step 1 allows for easy up-
dates and refinements: goals, functions, indicators, selection
rules, and their associations can all be altered, added or deleted
via changes to the database, updating selection rules without
altering the program itself.

The resulting suggested indicator list is grouped according
to critical soil function. The user is asked to select four to eight
indicators with at least one indicator from each function. To
maximize flexibility and accessibility, the user has final say as
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Table 1. Potential management goals and associated soil functions used to select appropriate soil quality indicators.

Reference for soil function
Doran and Parkin (1994); Seybold et al. (1998)

Management goal Supporting soil function

Productivity{ nutrient cycling[

Waste recycling:: water relations# Harris et al. (1996); Seybold et al. (1998)

Daily et al. (1997); Doran and Parkin (1994); Harris et al.
(1996); Seybold et al. (1998)
Daily et al. (1997); Harris et al. (1996); Seybold et al. (1998)

physical stability and supportf
filtering and bufferingi

resistance and resilience§§ Doran and Parkin (1994); Karlen et al. (1994)

biodiversity and habitat{[][ Doran and Parkin (1994); Karlen et al. (1994); Seybold et al.

(1998)

F The Productivity Goal is defined as enhancing or maintaining the production quantity, quality, and stability of economically important plants as a pri-
mary management concern.

+ The Animal Waste Recycling Goal involves the reuse of animal (or other) waste to eliminate it from the waste stream, while providing fertilizer and
other added values in an envirc tall d as a primary management concern.

§ The Environmental Protection Goal is defined as the use of efficient practices that enhance or maintain the quality of the soil, air and water on-farm
and in the surrounding ecosystem as a primary management concern.

9l Nutrient cycling—Soils that are functioning well have a high potential to provide optimal amounts of essential plant available nutrients and tie up excess
nutrients that may be toxic to plants or harmful if released to air or water.

# Water and solute flow—Water movement is important to provide water within a plant’s root zone and to allow for the movement of nutrients and
beneficial soil organisms in solution. Partitioning and storage of water and solutions can maximize deep percolation for ground water recharge and help
soils withstand erosive forces.

71 Physical Stability and structural support—Soils that function well have a physical structure that provides a medium for plant root growth and withstands

the erosive forces of wind and water. Soil structure is closely related to and often necessary for many other functions.

+% Filtering and Buffering-Soils have a natural capacity to degrade or reduce toxic or hazardous compounds. When functioning properly, soils can make

moderate amounts of certain contaminants less toxic to plants and animals, often by degrading the compound or adsorbing it onto a particle surface.

§§ Resistance and resilience-These two related terms refer to the functional stability of the soil ecosystem; that is, they are measures of the stability of

the other (listed) functions. Resistance is the ability of a soil to maintain function in the face of disturbance (i.e., to resist change). Resilience is the abil-
ity of a soil to bounce back after a disturbance. These disturbances can be human-induced (such as tillage or pesticide application) or natural (like a
large storm) (Herrick and Wander, 1998).

[1 Biodiversity and habitat-This function refers to the soils’ natural ability to provide the necessary conditions to support a variety of unstressed plants

and animals. It is agronomically important for integrated pest management, nutrient cycling, and ecotourism (health of the surrounding ecosystem).

to which indicators are selected for the MDS and can elect to
ignore the suggested list or use a different number of indicators
(i.e., greater than four or less than eight). At this time, although
all 80+ indicators can be offered for the suggested list, only
10 are available for use in the next step (because scoring al-
gorithms have yet to be fully developed).

Indicator Interpretation

After selecting (Step 1) and measuring the appropriate indi-
cators for the MDS, indicator interpretation (Step 2) involves
transformation of each observed MDS indicator value using
nonlinear scoring curves (e.g., Karlen and Stott, 1994; An-
drews et al., 2002a, 2002b). It is assumed that indicator mea-
sures are performed according to standard methods for the
near surface (0-15 cm) and that sampling design is appropriate
for the area to be assessed (see the case study section for ex-
amples). Measured values are transformed into unitless values
so that scores may be combined to form a single value in Step
3. The use of scoring curves for data analysis and synthesis
allows interpretations to reflect both ecosystem function and
farmer and societal values regarding crop production and envi-
ronmental protection (Schiller et al., 2001). For example, soci-
ety currently places a value on the protection of surface water,
therefore, the measurements for soil P that are above what
is necessary for crop production receive lower scores, particu-
larly on sloping land, to reflect the increased risk of surface
water contamination (Fig. 2). Scoring curves are used in a
similar manner in a variety of disciplines such as measurement
of utility in economics (e.g., Norgaard, 1994), evaluation of
decision outcomes in multi-objective decision science (e.g.,
Yakowitz et al., 1993), and assessment and modeling in systems
engineering (e.g., Wymore, 1993).

Each SMAF scoring curve consists of an algorithm or logic
statement (e.g., if, then, else) with alternative algorithms (Ta-
ble 3). The algorithms are quantitative relationships between
empirical values of measured indicators and normalized scores,

reflecting the performance of ecosystem service(s) or soil func-
tion(s). In the framework, each indicator measure is trans-
formed via the scoring algorithm into a unitless score (0 to 1)
that represents the associated level of function in that system.
An indicator score of 1 represents the highest potential func-
tion for that system, that is, the indicator is nonlimiting to
pertinent soil functions and processes, within the soil’s inher-
ent capability.

We assume the general relationship between a given indica-
tor and the soil function(s) it represents holds relatively con-
stant among systems. This relationship dictates the shape of an
indicator’s scoring curve (or the algorithm’s equation). Some
general shapes include more-is-better (upper asymptotic sig-
moid curve), less-is-better (lower asymptote), and mid-point
optima (Gaussian function) (Karlen and Stott, 1994; Andrews
and Carroll, 2001; Andrews et al., 2002a, 2002b). Current sci-
entific knowledge allows us to predict general shapes and the
flexibility of the framework will make refinements simple as
the knowledge base improves.

The nonlinear scoring algorithms were originally constructed
using a curve-fitting program, CurveExpert v. 1.3 shareware
(available online at http://curveexpert.webhop.biz/ [verified 22
June 2004]). The curve shapes were determined by literature
review and consensus of collaborating researchers. Total or-
ganic C (TOC) and water stable aggregation (AGG) are as-
cending logistic or more-is-better functions based on their
roles in soil fertility, water partitioning, and structural stability
(Tiessen et al., 1994; Herrick and Wander, 1998). Plant avail-
able water holding capacity (AWC) was assigned a more-
is-better curve, based on the role of water availability for crop
productivity and other biological activity (e.g., Gregory et al.,
2000). The more-is-better curve was also used for potentially
mineralizable N (PMN) based on nutrient availability and a
theorized relationship between microbial activity and plant
productivity (e.g., Hendrix et al., 1990; Sparling, 1997). The
more-is-better curve was also used for microbial biomass C
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Table 2. A subset of potential indicators for each function (with associated management goals in parentheses) including: the additional
selection criteria for that indicator; the case study for which each rules set applied (if any); and references for each indicator or

selection criteria (when available).

Soil function Indicatort Criteria for selection of indicator I Case study Reference for use as SQ indicator§

Biodiversity and habitat MI large spatial area of interest NRI (as endpoint) Bongers (1990); Linden et al.
(environmental goal) (Neher et al., 1995) (1994); Blair et al. (1996)

qCO, environmental management goal (not used) Gregorich et al. (1994); Sparling
or C change assessment (1997)

Filtering and buffering D, manure management goal GA Larson and Pierce (1991); Doran
(waste managment and Parkin (1994); Arshad et al.
and environmental (1996)
goals)

test P environmental goal or manure NRI Harris et al. (1996)
applied (Sharpley et al., 2003; GA
Sims, 1995)
TOC always suggested under this NRI Larson and Pierce (1991); Doran
function and Parkin (1994); Elliot et al.
(1994); Sikora and Stott (1996)
Nutrient cycling MBC C change assessment or NRI, IA Turco et al. (1994); Gregorich et
(all goals) alternative to PMN (Sparling, GA al. (1994); Rice et al. (1996)

1997)

PMN always suggested under this NRI, 1A Doran and Parkin (1994),
function Needelman et al. (1999)

soil pH always suggested under this NRIL IA, Doran and Parkin (1994); Smith
function CA, GA and Doran (1996); Karlen et al.

(1996)

test P organic amendment comparison CA listed above
or southern region +
productivity goal

Physical stability AGG always suggested under this NRIL 1A Harris et al. (1996); Arshad et al.
and support function (1996); Karlen et al. (1996)
(environment and
productivity goals)

D, clay texture + practice (not used) listed above
comparison
soil pH arid region NRI, CA listed above
Resistance and soil depth environmental or productivity (not used) Arshad et al. (1996); USDA-NRCS
resilience (all goals) management goal (2001); Grossman et al. (2001b)
TOC comparisons over time or C 1A listed above
change assessment or organic NRI
amendment comparison CA, GA
Water relations AWC always suggested under this GA Larson and Pierce (1991); Lowery
(all goals) function et al. (1996)
D, tillage comparison 1A listed above
EC arid regions or manure CA Smith and Doran (1996)
management goal
SAR selected in arid regions CA Andrews et al. (2002a, 2002b)
soil pH arid region or manure NRIL, CA listed above
management or fertilizer GA

comparison + water quality

T MI, nematode maturity index (used as an endpoint measure instead of a MDS indicator, see text); qCO,, metabolic quotient (a proportion of soil
respiration and microbial biomass); D, bulk density; test P, soil test P; TOC, total organic C; MBC, microbial biomass C; PMN, potentially
mineralizable nitrogen (aerobic incubation); AGG, macroaggregate stability; AWC, available water capacity; EC, electrical conductivity; SAR,

sodium absorption ratio.

i When the stated criteria are met under a given function, the corresponding indicator is suggested as a potential minimum data set component.

§ SQ, soil quality.

(MBC) based on its role as a pool of readily available C and
N and an association with improved soil structural functioning
(Elliott and Coleman, 1988; Hendrix et al., 1990). A lower
asymptotic or less-is-better function was used for bulk density
(Dy) because of the inhibitory effect that high D, often has
on root growth and soil porosity (Grossman et al., 2001b).
Variations of mid-point optimum or Gaussian functions were
used for soil pH (Whittaker et al., 1959; Smith and Doran,
1996) and electrical conductivity (EC) (Tanji, 1990) based on
crop sensitivity and effects on nutrient availability. Scores for
sodium adsorption ratio (SAR) were dependent on potential
for soil dispersion, environmental (water quality) risk, and as-
sociated EC levels (Oster and Schroer, 1979; Hansen and
Grattan, 1992). The mid-point optimum curve for P is based
on crop response and environmental risk (Pierzynski et al.,
1994; Maynard, 1997).

We assume that the expected range for each indicator will

vary according to site-specific controlling factors, such as cli-
mate or inherent soil properties. For instance, in a southeast-
ern U.S. Ultisol, a TOC of 2% would be considered a high
value; this soil would receive a high TOC score. In a Midwest-
ern Mollisol, however, a TOC of 2% would be considered a
low value, consistent with a degraded soil. It would receive a
correspondingly low score. The factors controlling these dif-
ferences in expected range for TOC include average annual
precipitation, average annual temperature, soil texture, and
soil taxonomic suborder (as a surrogate for inherent soil or-
ganic matter). To model these associations between indicators,
function, and controlling factors, one must have knowledge
of (or make assumptions about) not only the appropriate curve
shape (based on the indicator’s relationship to ecosystem func-
tion) but also the expected direction of change in curve inflec-
tions as major controlling factors change. For instance, as tem-
perature and precipitation increase, expected TOC decreases



e
)
>
P
o)
)
o
S
%)
(]
L=
2
—
>
o
o)
o
<
@
O
S
0]
(S
<
=
o
>
=
Q2
(&)
o
w
o
8]
c
2
(%)
w
ko)
w
>
a
e
)
<
2
e
S
o
[
c
—
=
o
©)
T
L
P
[0)
S
<
=
o
>
=
Q2
(%)
o
w
o)
O
C
Q2
(3]
w
o)
w
(S
o
S
=
e
o)
8]
=}
S
o
—
oY
()
o

ANDREWS ET AL.: SOIL MANAGEMENT ASSESSMENT FRAMEWORK 1949

fescue, 0-2% slopes

fescue, >16% slopes

1O | —
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031 isbased onrisk v
of P runoff to water
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0 100 200 300
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Fig. 2. Scoring functions for soil test P, showing differences based solely on slope: for sites with 0-2% slopes, for 4-8% slopes, and >16% slopes.
Other assumptions made to generate this example were: P was determined using Mehlich III, soils were planted to fescue, and inherent soil
characteristics include medium high organic matter (approximately 3.5-5% total organic C), silt or silt loam texture, and only slight weathering.
In this example, the inflection points for the ascending portion of the curve depend on primarily crop requirements while the descending

portion inflection points are largely dictated by slope.

due to increased decomposition rates under these conditions.
This results in a shift to the left in the algorithm’s inflection
points.

We used CurveExpert v. 1.3 shareware to identify which pa-
rameters in the scoring curve algorithms needed to change to
best represent the relationships between each indicator and
soil function(s) in various systems, for example, climate, soil,
and crop combinations. We also, by default, identified those
parameters in the algorithms that do not change, which are
termed fixed parameters. We then determined, via literature re-
view, the most important controlling factors for each MDS
indicator. We linked these controllers to the site-specific pa-
rameters, using database tables in Java and look-up tables in
Excel. For example, the controlling factors for the D, scoring-
algorithm are texture and mineralogy (Table 3). Using a logic
statement, the program chooses between two sets of param-
eters for one algorithm based on soil texture. As texture be-
comes coarser, Parameters b, ¢, and d change to reflect a greater
tolerance of higher D,’s before root restriction or aeration be-
come a problem. In clayey soils, mineralogy comes into play,
such that glassy and smectitic soils have a lower tolerance of
high Dy’s compared with other mineral classes (Grossman
et al., 2001a). Table 3 shows the algorithms, fixed parameters,
site-specific parameters, and controlling factors for 10 scor-
ing curves.

For some of the site-specific parameters, there were too
many controlling factors to identify exact values for every pos-
sible combination. To circumvent this problem, we grouped
some factors into classes that behave similarly. For instance,
soil texture is grouped into five classes based on the work of
Quisenberry et al. (1993). Conversely, a few parameters are
modeled as continuous (rather than step) functions. For exam-
ple, we used observed TOC as a site-specific factor in the test
P scoring algorithm. By identifying expected trends in function
due to controlling factors, this approach yields site-specific
soil indicator interpretations without the need to construct
formal thresholds for every possible combination of soil, cli-
mate, and crop.

Using these algorithms and their fixed and site-specific pa-
rameters, we created scoring curves that shift to provide a site-
specific interpretation for each indicator. Figure 2 illustrates a

hypothetical example of this phenomenon for the indicator soil
test P (test P). The left side of the P scoring curve (ascending to
an upper-asymptote) is based primarily on crop requirements
(or crop class) and well supported in the literature (e.g., May-
nard, 1997). The right side (lower-asymptote) reflects environ-
mental risk (P runoff to surface water) and is based primarily
onslope. (Slope is grouped into five classes: 0-2,2—4,4-8, 8-16,
and >16%.) The right-side portion of the curve is currently less
well defined in the literature. Both sides of the curve are
influenced by observed TOC (as a continuous function), soil
texture class (as a step function), and method of soil P detec-
tion (acting as classes to form a step function) as well (Fig. 2
and Table 3).

Integration into an Index

Step 3 of the SMAF, index integration, is optional but offers
the potential to integrate all of the indicator scores from the
previous interpretation step into a single, additive index value.
This value is considered to be an overall assessment of SQ,
reflecting management practice effects on soil function. An-
drews et al. (2002a) found few differences among various
integration techniques including additive (e.g., Andrews and
Carroll, 2001), weighted (Harris et al., 1996); and max—min
objective functions (e.g., Yakowitz et al., 1993) when used to
combine nonlinearly scored indicator values. Therefore, we
chose the simplest alternative, the additive index, for the inte-
gration step. This step is accomplished by summing the scores
for each indicator, dividing by the total number of indicators,
and then multiplying by 10 (Eq. [1]):

N
SQI = (’z;l) X 10 [1]
where S represents the scored indicator value and n is the
number of indicators in the MDS.

Using the number of indicators in the MDS as a divisor cor-
rects for any missing data in the data set. The index value was
multiplied by 10 to provide index values in a range (1 to 10
rather than 0 to 1) found to be more amenable for producers
and other potential users (Andrews et al., 2003).
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The Case Studies
Site Descriptions and Experimental Designs

We applied the SMAF to four large, existing data sets from
studies conducted at different scales and regions within the
USA. Site descriptions for each of the studies are presented
below; metadata is summarized in Table 4.

The largest scale case study was a 1996 Natural Resources
Inventory (NRI) pilot project, for which SQ indicator data
were collected from a representative subset of the NRI moni-
toring sites located in Major Land Resource Area 9. This area
comprises the Palouse and Nez Perce Prairies and spans south-
eastern Washington, northwestern Idaho, and northeastern Ore-
gon. The approximately 23 140-km? region includes broad ranges
in elevation and average annual precipitation and temperature
(Brejda et al., 2000a, 2000b). The agricultural land uses in the
region consist of about 50% cropland, most of which is dry-
farmed to wheat (Triticum aestivium L.), spring pea (Pisum
sativum L.), and lentils (Lens culinaris L.), 40% rangeland,
and 10% permanent pasture or vegetable production (USDA-
SCS, 1981). Soil samples were collected irrespective of soil se-
ries or land use using the NRI sampling design (Brejda et al.,
2000a, 2000b).

For the Iowa case study, we used data collected in 1994
and 1995 from two field-scale watersheds (WS) with a 25+ yr
tillage system comparison at the Deep Loess Research Station
near Treynor, TA. One of the watershed treatments (WS2) was
cropped to continuous corn (Zea mays L.) on the contour from
1964 to 1995. The other watershed treatment (WS3) was used
for cattle grazing from 1964 to 1972, and then converted to con-
tinuous corn production using ridge tillage in 1972 (Cambardella
et al., 2004). Soils at summit positions are Monona silt loams
(fine-silty, mixed, superactive, mesic Typic Hapludolls). Ida or
Dow silt loam soils (fine-silty, mixed, calcareous, mesic Typic
Udorthents) are found in backslope positions. Footslope soils
are generally Napier or Kennebec silt loams (fine-silty, mixed,
superactive, mesic, Cumulic Hapludolls) (Karlen et al., 1999).
Twelve sampling locations were distributed within each WS
based on soil series, slope, and erosion class. Locations were
consistent each year.

A third study, the Sustainable Agriculture Farming Systems
project, involved 1.2-ha plots managed using different vege-
table production systems near Davis, CA (Clark et al., 1998,
1999a, 1999b) in a randomized split plot design. The four man-
agement system treatments differed by crop rotation and use
of external inputs: conventional 2 yr (Conv-2), conventional
4 yr (Conv-4), low input, and organic. Both conventional treat-
ments received applications of synthetic pesticides and ferti-
lizers at rates recommended for the region by University of

California Cooperative Extension Service. The Conv-2 rota-
tion consists of processing tomato (Lycopersicon esculentum
Mill.) and wheat. The Conv-4 rotation was tomato, corn, saf-
flower (Carthamus tinctorius 1.), and wheat and dry beans
(Phaseolus vulgaris L.) (double cropped). The organic treat-
ment used composted and aged animal manures, rotations of
winter cover crops, and some organic supplements for fertility
and pest management. The low treatment combined both syn-
thetic and organic techniques: synthetic fertilizer was applied
at about one half the recommended rate and pesticide use
was reduced by cultivation and hand hoeing. The organic and
low treatments had identical cash crop rotations of tomato,
safflower, corn, oats (Avena sativa L.) + vetch (Vicia spp.),
and dry beans (double cropped) (Clark et al., 1998, 1999a,
1999b; Andrews et al., 2002a). All possible entry points for the
rotations were represented each year. The soils were classified
as Reiff loams (coarse-loamy, mixed, nonacid, thermic Mollic
Xerofluvents) and Yolo silt loams (fine-silty, mixed, nonacid,
thermic Typic Xerorthents). We used the 1996 data set.

The smallest scale case study was a plot-scale experiment
in Georgia to compare the residual effects of fresh versus com-
posted broiler litter on SQ in tall fescue (Festuca arundinacea)
pasture, 3 yr after application (Andrews, 1998; Andrews and
Carroll, 2001) in May 1995. Four experimental treatments
(split application totals) consisted of surface-applied poultry
(broiler) litter applied at approximately 1845 kg N ha™!; sur-
face-applied composted broiler litter at approximately 1845
kg N ha~! (representing the high end of litter application rates
in the region); surface-applied ammonium nitrate treatment
providing 100 kg N ha™!, 13 kg P ha™!, and 33 kg K ha™!; and
a no amendment control, applied in a randomized complete
block design (Tyson, 1994). The high litter amendment rates
were representative of (the high end of) surface applications
for waste disposal in the region. The study was conducted at
two locations, with four blocks at each site: near Calhoun, GA,
on a Conasauga silt loam (fine, mixed, semiactive, thermic,
Oxyaquic Hapludalfs) in the Southern Appalachian Ridges
and Valleys region; and near Farmington, GA, on a Cecil sandy
loam (fine, kaolinitic, thermic, Typic Kanhapludults) in the
Piedmont region.

Laboratory Analyses

The SQ indicators were measured for bulked core samples
taken from 0 to 10 cm (for NRI), 0 to 15 cm (at IA and CA),
and 0 to 5 cm (for GA) of soil at each case study location,
using standard methods. The NRI dataset included approxi-
mately 20 chemical, biological, and physical indicators (Brejda
et al., 2000a, 2000b). The Iowa study included 21 chemical,

Table 4. Selected metadata for the soil management assessment framework (SMAF) case studies: the 1996 Natural Resources Inventory
(NRI); Deep Loess Research Station, 1994-1995 (IA); Sustainable Agriculture Farming Systems project, 1996 (CA); two Experiment

Stations in northeast and northwest Georgia, 1995 (GA).

Case study
Property NRI CA GA
Location ID, WA, OR near Treynor, IA near Davis, CA Calhoun and Farmington, GA
Scale regional 30-60 ha watersheds 1.2 ha plot 2.5 m plot
Treatment multiple land uses conventional and vegetable production poultry litter amendment
minimum tillage system

Soil suborders primarily Xerolls, Albolls, Xeralfs

Udolls, Orthents

Fluvents, Orthents Udults, Udalfs

Data types chemical, biological, and physical chemical, biological, mostly chemical chemical, biological, and
and physical physical
Source NRI pilot} DLRSi SAFS§ Andrewsq[
Management goal environmental protection productivity productivity manure (or waste) management

T Natural Resources Inventory pilot study (Brejda et al., 2000a, 2000b).
i Deep Loess Research Station (Cambardella et al., 2004).

§ Sustainable Agricultural Farming Systems project (Clark et al., 1998, 1999a, 1999b).
1l Ph.D. dissertation (Andrews, 1998) and previous SQ assessment publication (Andrews and Carroll, 2001).
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biological, and physical indicators SQ indicators (Cambardella
et al., 2004). The California dataset was comprised of 19, mostly
soil chemical, SQ indicators (Clark et al. (1998).) The Georgia
study included 38 chemical, biological, and physical SQ indica-
tors (Andrews and Carroll,2001). The indicators with methods
described below are included in at least one case study MDS.

Aggregate stability was assessed according to methods de-
scribed by Cambardella and Elliott (1993) and expressed as
the percentage of the total soil that was water-stable macro-
aggregates >250 wm in diameter. Available water capacity was
estimated by difference in water retention between soils held
at 1.5 and at 0.01 MPa (15 and 0.1 bar) (Klute, 1986). Bulk
density was estimated by a modified core method (Blake and
Hartge, 1986), in which soil moisture content, determined by
drying a subsample of the cored soil at 105°C, was used to con-
vert the total mass of the field-moist soil core to an oven-dry
weight. Electrical conductivity (Rhoades, 1982) of saturated
pastes (U.S. Salinity Laboratory Staff, 1954) was measured
using a conductivity meter. Microbial biomass C was measured
by fumigation—extraction method (Sparling and Ross, 1993)
for the NRI, Iowa, and Georgia case studies, and by the chloro-
form-incubation method (Horwath et al., 1996) for the Califor-
nia study. Soil pH was determined in 1:1 soil/water for NRI
and Georgia, 2:1 soil/water in Iowa, and saturated paste in
California (Thomas, 1996). Potentially mineralizable N was
measured using a 28-d aerobic incubation methods described
by Drinkwater et al. (1996) (for IA and NRI) or Bundy and
Meisinger (1994) (for CA). Sodium Adsorption Ratio was
calculated using results from saturated paste extracts of Na™,
Ca**, and Mg*" in milliequivalents per liter (U.S. Salinity
Laboratory Staff, 1954). Soil test P was measured via a differ-
ent method for the case studies: for NRI and IA studies,
the method followed the Mehlich-III extraction procedure
(Mehlich, 1984); at the California site it was determined by
extracting samples with a 0.5 M sodium bicarbonate solution
(Olsen et al., 1954); and the GA study used Mehlich-I double
acid extraction (Kuo, 1996). Extractions were followed by in-
ductively coupled plasma emission (NRI) or colorimetric de-
tection via molybdate reaction. Total organic C (after removal
of carbonates with 1 M H,SO,) was determined via dry com-
bustion of dried ground samples using a gas analyzer (Pella,
1990).

Endpoint Measures

One reason the case studies were selected to demonstrate
the framework was that their large, existing data sets included
either direct endpoint measures or other indirect endpoint sur-
rogates, which reflected the management or societal goals at
each site. The available endpoint data varied with each case
study. Some data were available for each sample point and
other data were only available as treatment means (noted
below). When only means were available, comparisons were
made among treatment means rather than individual sample
points. These endpoint measures and surrogates served as
proxies for the identified management goals and were used
to validate the efficacy of the MDS and indicator scoring.

The NRI case study included multiple land uses. Therefore,
we assumed the management goal to be environmental protec-
tion. The endpoints were a percentage of C change and a ne-
matode maturity index, which were calculated from the exist-
ing data. We defined the percentage of change in TOC to be
the percentage of difference in observed TOC and mean soil
survey TOC value for each observed soil series, as an indirect
measure of C sequestration. We calculated the nematode ma-
turity index based on the method of Bongers (1990). It is a
measure of system disturbance based on the relative abun-

dance of nematode functional groups or feeding guilds. The
maturity index met the selection criteria in the selection rules
database (in Step 1) (Table 2) and thus was a potential MDS
indicator for this case study. We chose to use it as a endpoint
measure instead, in part because there were few endpoints
available for this dataset but also because: (i) increased bio-
diversity is a legitimate societal goal and (ii) the expertise
and time involved in performing this measure makes it an
unattractive indicator for future use.

Productivity was assumed to be the management goal for
the Towa case study. The endpoint measures were yield (Mg
ha™"'), collected from plots at various landscape positions (e.g.,
hilltop or shoulder/summit, sideslope or backslope, and toe-
slope) that were adjacent to the soil sampling sites, and sedi-
mentation (Mg ha™'), measured as soil material leaving each
WS in stream water collected at a weir. The endpoint surro-
gates, available as WS means, included pesticide application
rates for atrazine and metalochlor (liters applied), as represen-
tatives of potential soil and water contamination.

The management goal for the California case study was
assumed to be productivity. The endpoint measures used net
revenues for each system (treatment means) and net revenues
and yield for tomatoes (the main cash crop) (Clark et al.,
1999b). The endpoint surrogates used included: water use effi-
ciency (mm water X crop yield™!); weed cover (%); and the
number of tillage operations per year (treatment means only)
(Andrews et al., 2002a), included as an indirect measure of
soil disturbance.

The Georgia study’s assumed goal was waste recycling. The
available endpoint data, from Years 1 and 2, were amount of
litter applied (kg dry litter applied ha™'), using a conversion
factor adapted from Safley and Safley (1991) to represent com-
post as an equivalent volume of fresh litter, and fescue yield
(kg dried biomass ha™'). Both litter applied and yield were
available as treatment means only. From Year 3, when soils
were sampled, the endpoint surrogates used were soil extract-
able As and Cu, determined via Mehlich-I double acid extrac-
tion (Amacher, 1996). These metals are common poultry feed
fungicidal components and serve as proxies for all metal con-
taminants.

Statistics

We used JMP v. 3 software for Windows (SAS Institute,
Cary, NC) for all statistical analyses. We performed analysis
of variance (ANOVA) on the observed and the scored MDS
indicators, to compare the statistical differences between treat-
ments in each case study with and without scoring (Step 2).
We also examined the overall index values in Step 3 by plotting
and analyzing treatment means and standard deviations using
ANOVA and Student’s ¢. Finally, we performed stepwise re-
gressions of all available indicators (independent variables)
and endpoints (as iterative dependent variables) for each case
study. The p values for acceptance and rejection in the stepwise
models were 0.25 and 0.1, respectively. Examining the inci-
dence of MDS indicators that were not added to the regression
models acted as a check of the indicator selection step. We
also examined the efficacy of indicator scoring by comparing
the R? for regressions using scored versus observed data. The
indicators available for the regressions were limited to those
having scoring curves (see Table 3), to allow the direct compar-
ison of observed and scored regression results. To make the R?
values comparable