
2:1 Clays

late 1-7. Structural scheme of soil minerals based on octahedral and tetrahedral sheets.

Table 13–1. Theoretical and representative observed formulas for members of the pyrophyllite–talc group.

5 8 7 6 4 7 6	Ideal formula				Representative observed formula;			
Mineral and reference†	Interlayer	Octahedral	Tetrahedral	Anions	Interlayer	Octahedral	THE RESERVE OF THE PERSON OF T	
		Base	The State of the S	LEB EN		Octaneural	Tetrahedral	Anions
Pyrophyllite (1) Ferripyrophyllite (2)	Sept Lyn	Al ₂ Fe ₂ ³⁺	Si ₄ Si ⁴	O ₁₀ (OH) ₂ O ₁₀ (OH) ₂	$rac{ ext{Dioctahedral}}{M_{0.01}^+\S} \ M_{0.10}^+$	$Al_{2.01}Fe_{0.01}^{2+}Mg_{0.02}$ $Fe_{1.87}^{3+}Mg_{0.11}Al_{0.09}$	Si _{3.88} Al _{0.12} Si _{3.80} Fe ³⁺ _{0.16} Al _{0.04}	O ₁₀ (OH)
Talc (1)		更集团			Trioctahedral	0.09	513.801 00.162 110.04	O ₁₀ (OH)
Willemseite (3) Minnesotaite (3)¶		Mg ₃ Ni ₃	Si ₄ Si ₄	$O_{10}(OH)_2$ $O_{10}(OH)_2$	$M^+_{0.02} \ M^+_{0.04}$	${ m Mg_{2.89}}M_{0.03}^{3+}M_{0.10}^{2+} \ { m Ni_{2.11}}M_{0.80}^{2+}M_{0.10}^{3+}$	Si _{3.97} Al _{0.03}	O ₁₀ (OH) ₂
Kerolite (4)	xH ₂ O#	Fe_3^{2+} Mg_3	Si ₄ Si ₄	$O_{10}(OH)_2$ $O_{10}(OH)_2$	$M_{0.01}^{+}$ $M_{0.04}^{+}$ • xH ₂ O	$Fe_{2.16}^{2+}M_{0.71}^{2+}M_{0.12}^{3+}$	Si _{3.93} Al _{0.07} Si _{3.93} Al _{0.07}	$O_{10}(OH)_2$ $O_{10}(OH)_2$
References for observed Discrepancy in 22 charge	xH_2O	Ni ₃	Si ₄	O ₁₀ (OH) ₂	rH-O	${ m Mg_{2.98}}M_{0.02}^{2+} \ { m Ni_{2.90}}M_{0.10}^{2+}$	Si _{3.96} Al _{0.04} Si ₄	O ₁₀ (OH) ₂ O ₁₀ (OH) ₂

[†] References for observed formulas: (1) Koster (1982), (2) Coey et al. (1984), (3) De Waal (1970), and (4) derived from observed formulas in Brindley et al. (1979).

[‡] Discrepancy in 22 charge basis of observed formulas for pyrophyllite, talc, willemseite, and minnesotaite maybe due to rounding errors or presence of impurities.

[¶] Minnesotaite is included here but may be placed more appropriately with modulated layer structures (Martin et al., 1991).

[#]Location of H_2O in all kerolite and pimelite structures is likely on external surfaces as well as within interlayer. x = value ranging from 0.8 to 1.2 (Brindley et al., 1979).

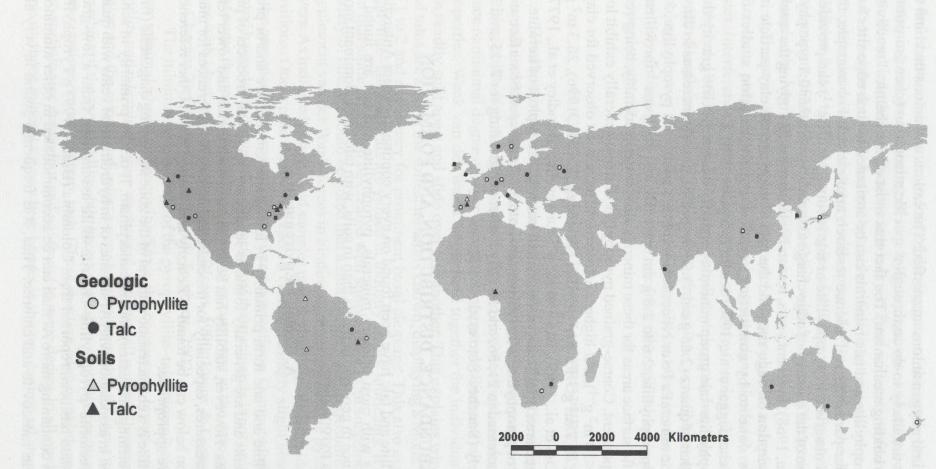


Fig. 13–1. Worldwide distribution of reported pyrophyllite and talc in geologic and soil settings.

Table 14-1. Idealized chemical formulas and sheet compositions for some trioctahedral and dioctahedral micas.†

750	Tetrahedral sheet composition	Octahedral sheet composition	Interlayer cation	Anions	Layer
Mineral	sneet composition	Well-fr			mol per formula un
Phlogopite Biotite Annite Lepidolite Clintonite	Si ₃ Al Si ₃ Al Si ₃ Al Si ₄ Al	Mg ₃ Mg _{0.6-1.8} Fe(II) _{2.4-1.2} Fe(II) ₃ [Li,Al] ₃ Mg ₂ Al Dioctahedral	K K K K Ca	O ₁₀ (OH) ₂ O ₁₀ (OH) ₂ O ₁₀ (OH) ₂ O ₁₀ (OH, F) ₂ O ₁₀ (OH) ₂	1 •1 1 1 2
Paragonite Muscovite Phengite Illite Glauconite Margarite	Si ₃ Al Si ₃ Al Si _{3.5} Al _{0.5} Si _{3.5} Al _{0.5} Si _{3.67} Al _{0.33} Si ₂ Al ₂	Al ₂ Al ₂ Al _{1.5} [MgFe(II)] _{0.5} Al _{1.75} [MgFe(II)] _{0.25} [AlFe(III)] _{1.33} [MgFe(II)] _{0.6} Al ₂	Na K K K _{0.75} K Ca	O ₁₀ (OH) ₂ O ₁₀ (OH) ₂	1 1 0.75 0.8 2

[†] Adapted from Bailey (1984).

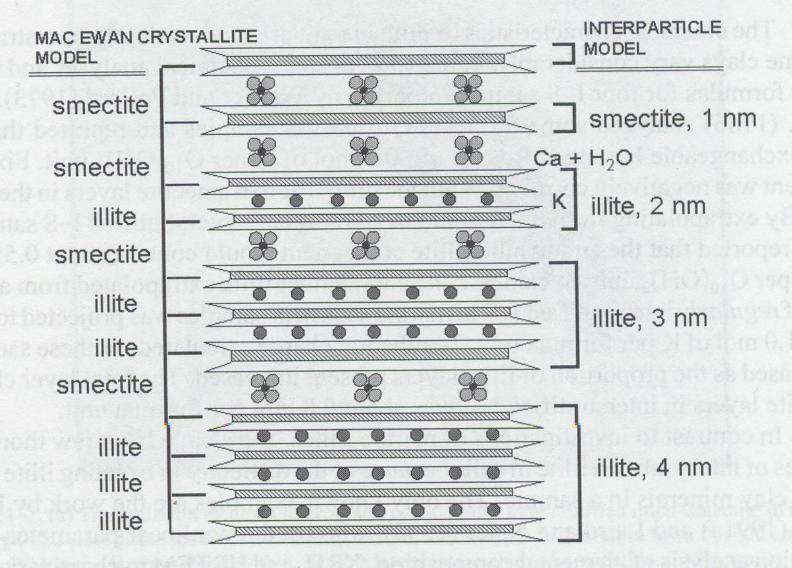


Fig. 14–1. Interstratified illite–smectite can be conceptualized as single crystallites (MacEwan model) or as collections of fundamental particles. High-charge layers are intercalated with K⁺ ions (dark circles). Low-charge layers are intercalated with Ca²⁺ and H₂O molecules. In this diagram, smectite appears to be more abundant when the structure is modeled as a single crystallite. Adapted from Nadeau and Bain (1986) and Ahn and Peacor (1986). Not to scale.

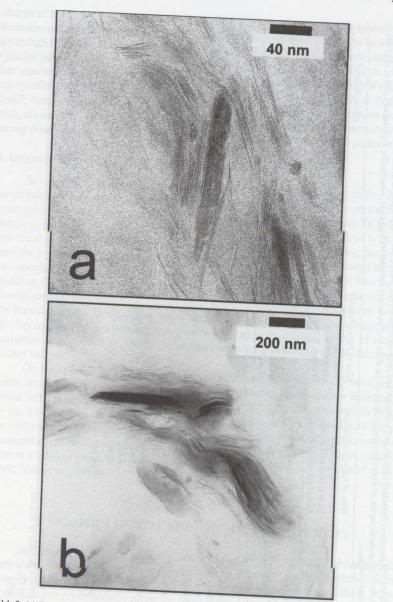


Fig. 14–2. (a) Transmission electron micrograph of randomly interstratified mica—smectite in the fine clay (<0.2 µm) dispersed from a fine-silty, mixed, mesic Typic Argiudoll in Iowa. A rigid core of 1-m micrograph of illite clay particle dispersed from a fine, smectitic. (b) Transmission electron micrograph of illite clay particle dispersed from a fine, smectitic, Quaternary paleosol in Iowa nium might be fixed. These samples were ultrasonically dispersed, equilibrated at 0.32 kPa, dehydrated with methanol, and impregnated with Spurr resin (Stucki & Tessier, 1991).

Table 14–2. Chemical analyses and structural formulas† of illites and interstratified illite–smectites. Note that (i) the K₂O content of interstratified illite–smectite decreases with increasing proportions of expandable layers, and (ii) chemical analyses of the shale and underclay samples include H₂O, whereas the analyses of Laird et al. (1991a) were normalized to a water-free basis.

	Illite of Precambrian shale (Montana)‡	Illite of Silurian shale (no detectable expandable layers) (Beavers Bend State Park, Oklahoma)§	Illite of Pennsylvanian underclay (10–15% expandable layers) (Fithian, IL)¶	Illite of Pennsylvanian shale (Petersburg, IL)¶	Illitic phase of interstratified smectite–illite (Webster soil, Minnesota)#
	$\begin{array}{c} \hline \\ Ca_{0.09}Na_{0.02}K_{0.89} \\ (Si_{3.43}Al_{0.57}) \\ (Al_{1.51}Fe^{3+}_{0.03}Fe^{2+}_{0.03}Mg_{0.43}) \\ O_{10}(OH)_2 \end{array}$	$\begin{array}{c} Ca_{0.02}Mg_{0.06}Na_{0.05}K_{0.59} \\ (Si_{3.47}Al_{0.53}) \\ (Al_{1.41}Fe^{3+}_{0.35}Fe^{2+}_{0.11}Mg_{0.13}) \\ O_{10}(OH)_2 \end{array}$	$\begin{array}{c} \text{Ca}_{0.02}\text{Mg}_{0.13}\text{Na}_{0.02}\text{K}_{0.52} \\ (\text{Si}_{3.45}\text{Al}_{0.55}) \\ (\text{Al}_{1.51}\text{Fe}^{3+}_{0.23}\text{Fe}^{2+}_{0.10}\text{Mg}_{0.16}) \\ \text{O}_{10}(\text{OH})_2 \end{array}$	$\begin{array}{c} Ca_{0.02}\ Mg_{0.24}Na_{0.01}K_{0.43} \\ (Si_{3.11}Al_{0.89}) \\ (Al_{1.34}Fe^{3+}_{0.64}Fe^{2+}_{0.00}Mg_{0.02}) \\ O_{10}(OH)_2 \end{array}$	$\begin{array}{c} \text{Ca}_{0.12}\text{K}_{0.23} \left(\text{Si}_{3.61}\text{Al}_{0.39}\right) \\ \left(\text{Al}_{1.55}\text{Fe}^{3+}_{0.26}\text{Mg}_{0.23}\right) \\ \text{O}_{10}(\text{OH})_2 \end{array}$
SiO ₂	50.55	49.85	51.22	44.01	59.12
Al_2O_3	26.14	23.68	25.91	26.81	26.91
Fe_2O_3	0.67	6.60	4.59	11.99	5.66
FeO	0.65	1.87	1.70	0.00	
MgO	4.25	1.86	2.84	2.43	2.55
CaO	0.60	0.12	0.16	0.11	1.84
Na ₂ O	0.19	0.34	0.17	0.07	
K_2O	10.29	6.64	6.09	4.78	3.01
TiO ₂	0.42	1.40	0.53	0.64	0.86
H_2O^+	4.59	6.80	7.14	8.08	
H ₂ O-	0.99	0.00	1.45	2.33	-
Total	99.34	99.16	101.80	101.25	99.95
Total layer charge, mol pe	er				
O ₁₀ (OH) ₂ unit		0.77	0.81	0.91	0.47

[†] Assume that TiO₂ is present as rutile or anatase.

[‡] Weaver and Pollard (1973).

[§] Mankin and Dodd (1963).

[¶] Grim et al. (1937).

[#] Laird et al. (1991a).

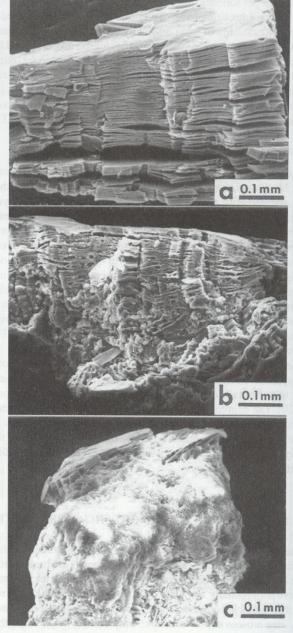


Fig. 14–3. Scanning electron micrographs that illustrate stages of biotite weathering in the saprolite of a North Carolina Hapludult (Graham et al., 1989a). (a) Partially expanded biotite grain (185-cm depth). (b) Expanded and extensively altered biotite grain (120-cm depth). (c) Micaceous morphology is almost completely lost in alteration to secondary minerals (120-cm depth). Presented by permission of The Clay Minerals Society.

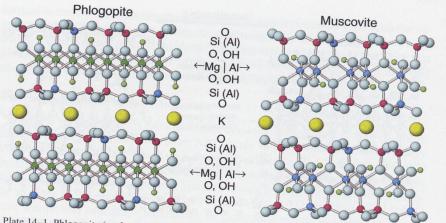


Plate 14–1. Phlogonite (analogous to biotite) and muscovite crystalline structures. Note that the position of the hydroxyl dipole in phlogopite is oriented perpendicularly to the (001) plane because all the octahedral positions are filled with divalent cations. In muscovite, the hydroxyl dipole is tilted toward the empty octahedral position and away from the interlayer K atoms. These structures were derived from neutron diffraction data of Joswig (1972) and Rothbauer (1971).

Plate 14-2. Light micrographs of biotite weathering in soil. (a) Exfoliated, weathered biotite pseudomorphs (now vermiculite) in a Natric Palexeralf derived from intrusive igneous rocks in California (plane-polarized light; Nettleton et al., 1968). (b) Parallel, linear alteration of biotite grains in a Typic Hapludult formed in saprolite that was derived from micaceous gneiss in the Virginia Piedmont, USA (cross-polarized light; Stolt et al., 1991).

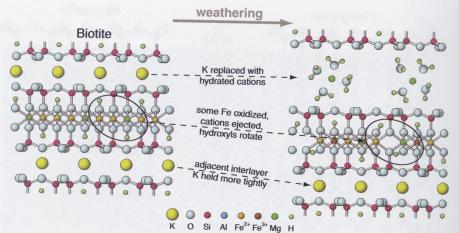


Plate 14–3. Weathering of biotite. In this trioctahedral mineral, hydroxyl dipoles in the octahedral sheet are perpendicular to the basal plane and relatively close to interlayer K ions. In an acidic, oxidizing environment where there is an external sink for K, loss of K and ejection of Fe from one layer cause K in the adjacent layer to be held more tightly as hydroxyls reorient toward the empty octahedral site and away from the remaining interlayer K.

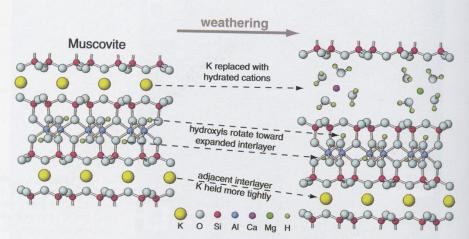


Plate 14–4. Weathering of muscovite. As K is lost from muscovite, positively charged hydroxyl dipoles in the octahedral sheet rotate toward the K-depleted interlayer region (from an angle of 15 to 20° from the horizontal to an angle of 50 to 60° from the horizontal). In this way, K atoms in the remaining, adjacent interlayer are farther from hydroxyl units than they were in the original structure, and they are therefore more resistant to subsequent removal. The expanded portion of the structure may appear in x-ray diffraction patterns to be smectite, as suggested in Fig. 14–1.

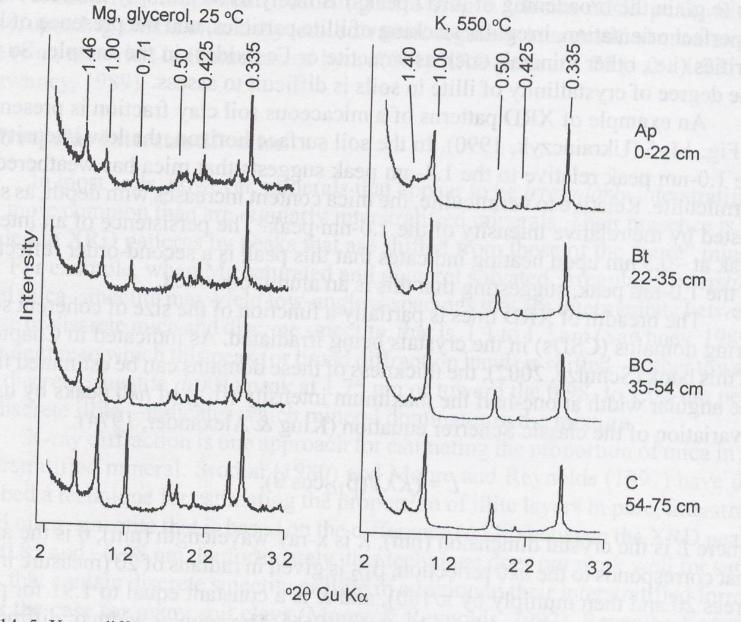
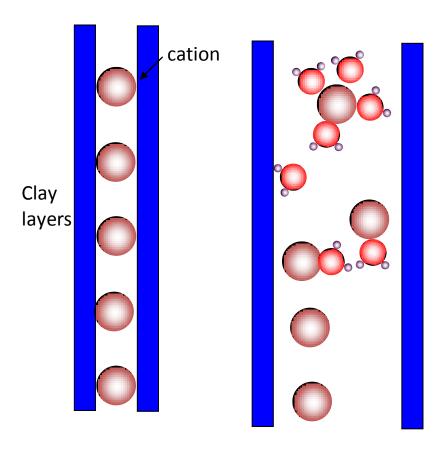
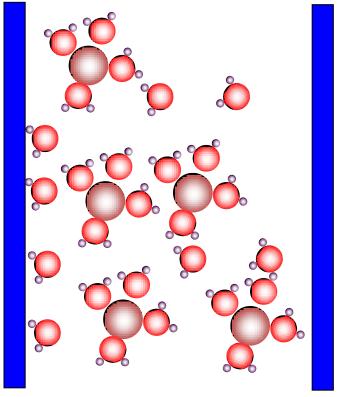



Fig. 14–5. X-ray diffraction patterns of the <2-μm fraction of a Glossoboric Hapludalf in New York (Ukrainczyk, 1990). Note the increase in intensity and sharpness of the 1.0-nm clay mica peak as depth increases.

2. Ion hydration



Dry condition (Interlayer)

The water molecules wedge into the interlayer after adding water

Na⁺ crystal radius: 0.095 nm

radius of hydrated ion: 0.358 nm

The cations are fully hydrated, which results in repulsive forces and expanding clay layers (hydration energy).

Smectites

Table 15-1. Ideal endmember formulas for minerals in the smectite group.†

Substitution	Dioctahedral	Trioctahedral
Octahedral	Montmorillonite $M_{0.33}^{+}(Si_4)^{IV}(Al_{1.67}Mg_{0.33})^{VI}O_{10}(OH)_2$	Hectorite $M_{0.33}^{+}(Si_4)^{IV}(Mg_{2\cdot 67}Li_{0.33})^{VI}O_{10}(OH)_2$
Tetrahedral	Beidellite $M_{0.33}^{+}(Si_{3.67}Al_{0.33})^{IV}(Al_2)^{VI}O_{10}(OH)_2$	Saponite $M_{0.33}^{\dagger}(\text{Si}_{3.67}\text{Al}_{0.33})^{\text{IV}}(\text{Mg}_3)^{\text{VI}}\text{O}_{10}(\text{OH})_2$
	Nontronite $M_{0.33}^{+}(Si_{3.67}Al_{0.33})^{IV}(Fe_3+)_2^{IV}O_{10}(OH)_2$	Sauconite $M_{0.33}^{+}(Si_{3.35}Al_{0.65})^{IV}(Zn_3)^{VI}O_{10}(OH)_2$

[†] M represents one or more exchangeable metal cations, and may have a value ranging from 0.2 to 0.6.

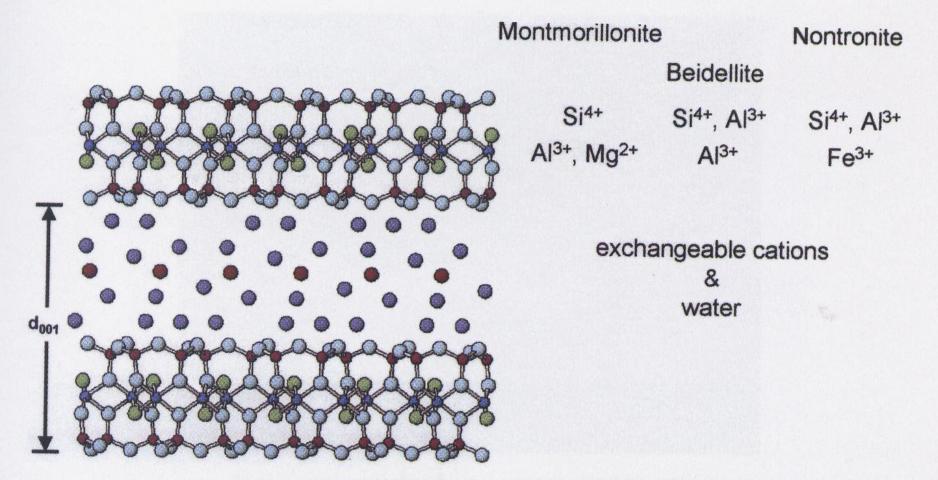


Plate 15–1. Generalized molecular structure of a smectite mineral. Two tetrahedral sheets and one octahedral sheet comprise the 2:1 layer. The interlayer region is shown with Na⁺ ions surrounded by water molecules but more commonly hydrated Ca⁺² and Mg⁺² ions occupy this region. The d₀₀₁ spacing shown in this Na-saturated mineral is 1.6 nm. (Figure by G. N. White, College Station, TX).

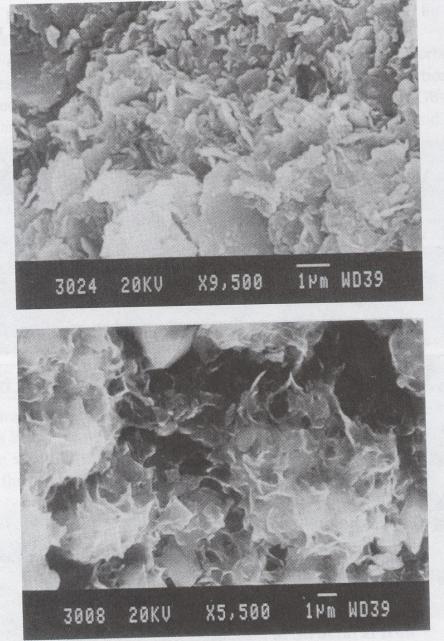


Fig 15–1. Scanning electron micrographs showing cabbage-like structure of neoformed nontronite coated by irregular and larger flakes on the same mineral sample. Magnification is on the photos. (Wiewiora et al., 1996; reprinted with the permission of the Clay Minerals Society, Boulder, CO.).

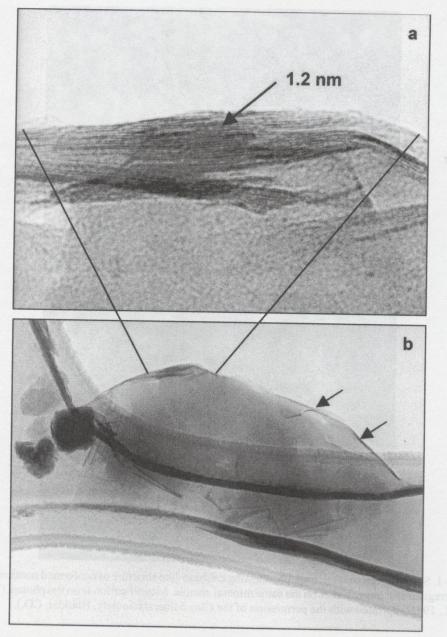


Fig. 15–2. Transmission electron micrographs illustrating characteristic morphologic properties of montmorillonite. (a) The sheet is so thin that only about 10 layers are indicated by the lattice fringes, shown by the fold at the edge of the particle magnified. (b) These layers have a spacing of about 1.2 nm and other folded edges are indicated by the arrows (courtesy of J.B. Dixon).

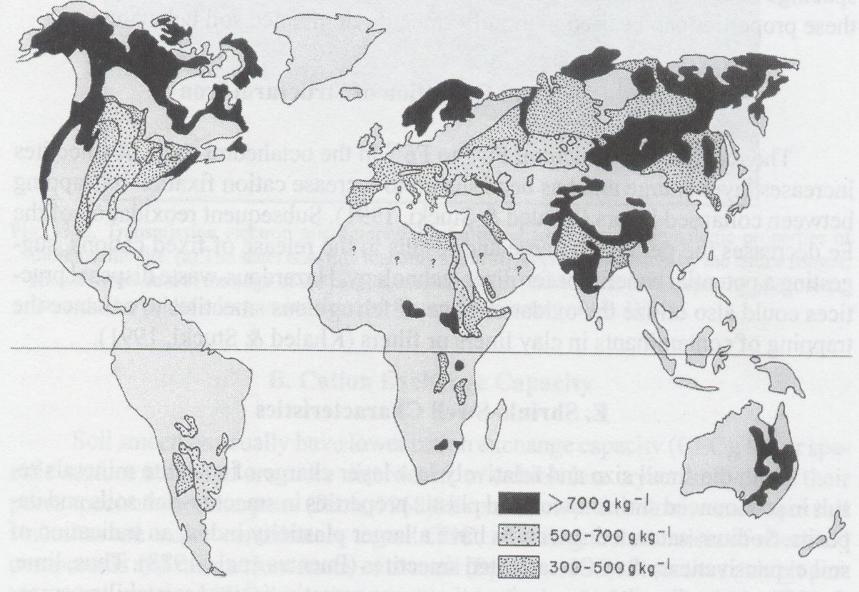


Fig. 15–3. Map of the world showing areas of soil with different proportions of smectite in clay fractions of their surface horizons (from Bordchardt, 1989).

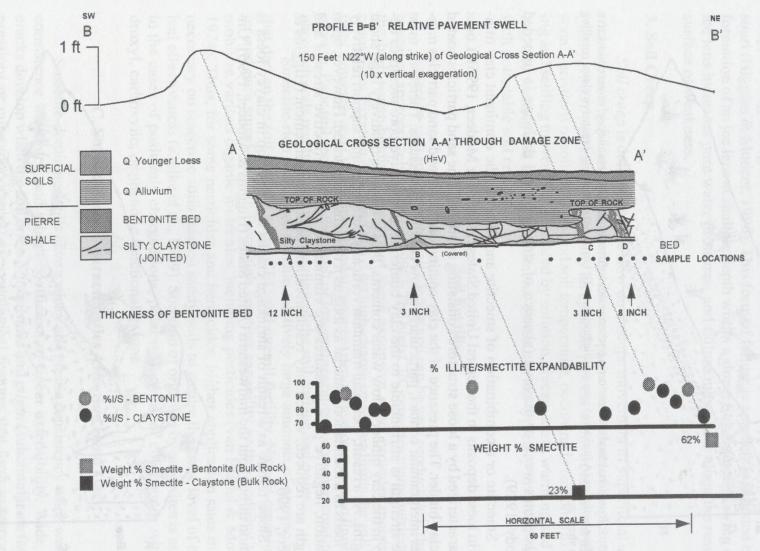


Fig. 15–4. Correlation of pavement damage with bentonite beds and respective percentage I–S and weight percentage of smectite (Gill et al., 1996; reprinted with the permission of the Clay Minerals Society, Boulder, CO).

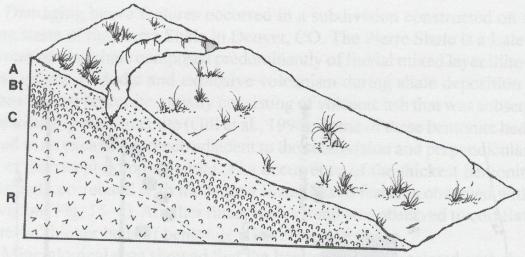


Fig. 15–5. Rotational landslide occurring when water infiltrates through less clayey, more conductive surface horizons (A horizons) into argillic horizons (Bt horizons) containing expansive clays, resulting in a shear zone.

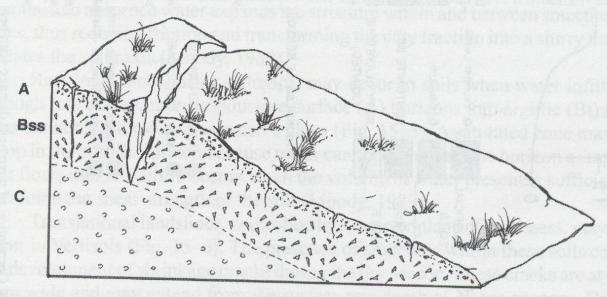


Fig. 15–6. Translational landslide occurring when water infiltrates cracks within a Vertisol. Failure zones occur where cracks in the B horizon (Bss indicates slickensides) end and strong to moderate soil structure becomes weak or massive in the C horizon.

Table 15-2. X-ray diffraction criteria for identification of smectites.

Treatment	Diagnostic d(001) spacings		
Appleto, the sales sales was View and the origin	nm		
Mg-saturated, air-dried	1.4–1.5		
Mg-saturated, glycerol liquid	1.7–1.8		
Mg-saturated, glycerol vapor	1.5, 1.7–1.8†		
K-saturated, air-dried	1.24–1.28		
K-saturated, 300°C	0.98-1.01		
K-saturated, 550°C	0.98-1.01		
Li-saturated, 200–300°C	0.95, 1.77‡		

[†] Montmorillonite expands to 1.8 nm with glycerol vapor solvation, but beidellite and nontronite do not change in the presence of the vapor and maintain basal spacings of 1.5 nm.

[‡] Only montmorillonite collapses in response to Li⁺ and heat treatment. Beidellite and nontronite exhibit basal spacings of 1.77 to 1.80 nm.

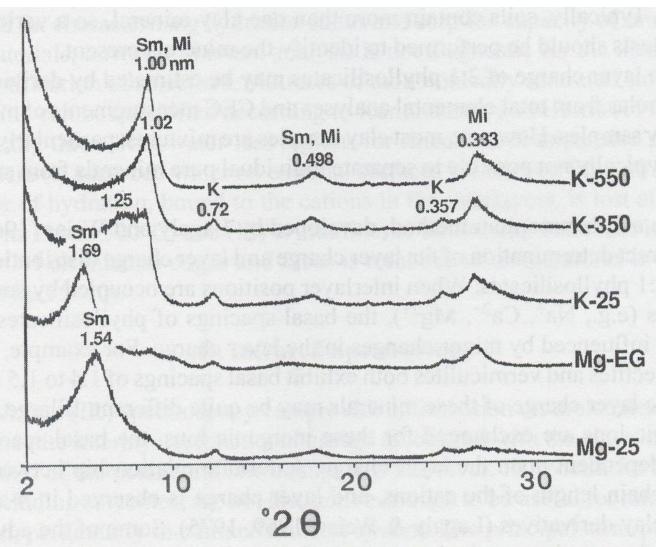


Fig. 15–9. X-ray diffractograms of the fine clay (<0.2 μm) fraction of a Bky2 horizon (135–180 cm) from a fine-loamy, mixed, thermic Typic Haploxeralf after various treatments using Cu Kα radiation. Mg-25 = Mg saturated at room temperature; Mg-EG = Mg-saturated and ethylene glycolated; K-25 = K-saturated at room temperature; K-350 = K-saturated, heated to 350°C for 2 h.; K-550 = K-saturated, heated to 550°C for 2 h. Sm = smectite; Mi = mica (illite); K = kaolinite; Q = quartz.

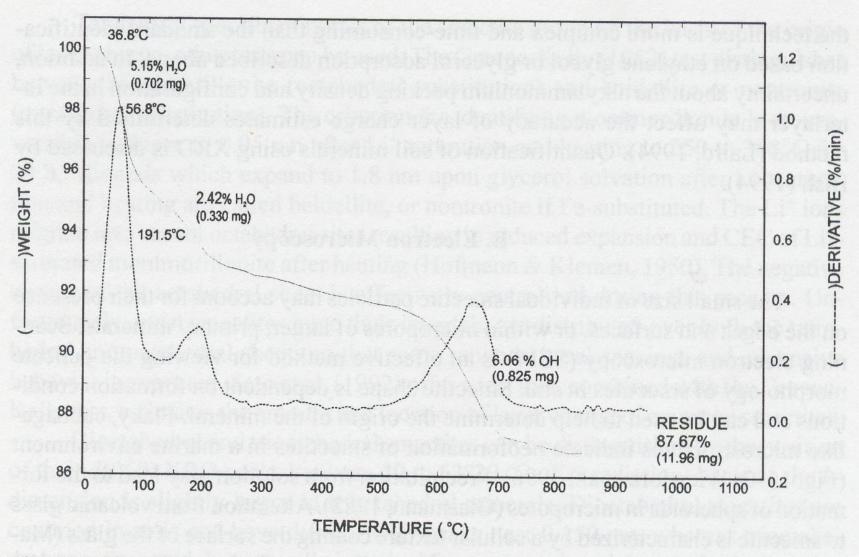


Fig. 15–10. Thermogravimetric analysis curve for smectite SWY-1 (Na-montmorillonite) showing two-stage low-temperature dehydration and dehydroxylation (10°C min⁻¹ heating rate, 50 cm³ min⁻¹ N₂ purge, 13.64-mg sample, 0.10–0.35 μm particle size). (Bish & Duffy, 1990; reprinted with permission of the Clay Minerals Society, Boulder, CO).

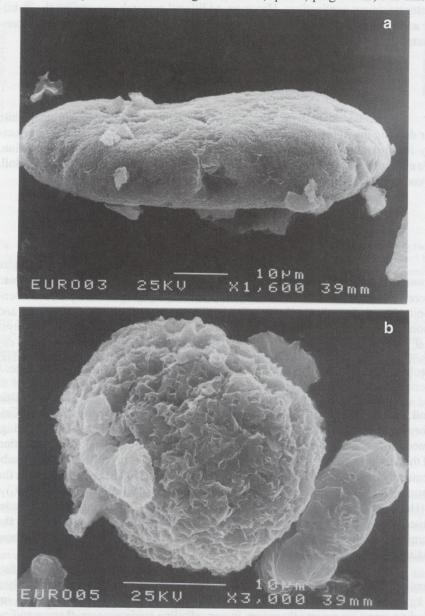


Fig. 15–11.Smectite aggregates from a Spanish bentonite that lacked colloidal properties characteristic of good bentonites (i.e., Atterburg liquid limit of 98% vs. ~400% for model bentonite), yet with a cation exchange of 105 cmol_c kg⁻¹ similar to model bentonite. Lack of colloidal properties is attributed to 50% silt- and sand-size particles (a) like those shown with edges of the smectite layers shown in rounded particle and (b) characteristic foliar properties of smectite in particle. X-ray diffraction confirmed smectite in silt and sand particles (Courtesy of G.N. White and J.B. Dixon).

Vermiculite

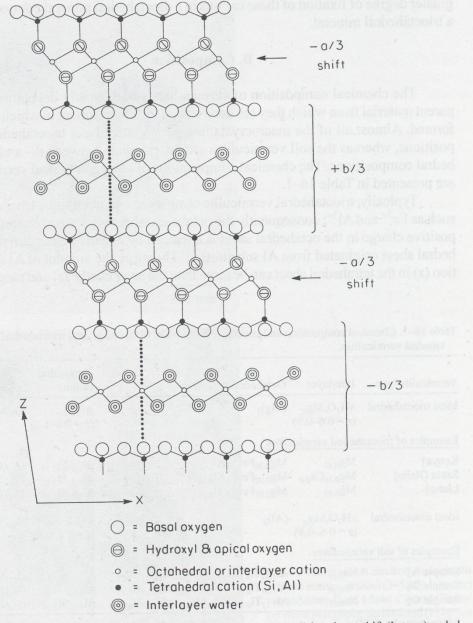
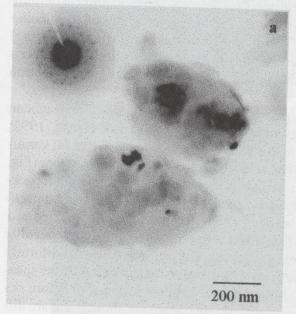


Fig. 16–1. The n[010] view of Llano vermiculite structure, with $-a_1/3$ intralayer shift (L-type) and alternation of $\pm b/3$ shifts between adjacent 2:1 layers. Vertical dots show alignment of interlayer cations between tetrahedra above and below. (Bailey, 1980b).


Table 16–1. Chemical composition and structural formulas of ideal and typical trioctahedral and dioctahedral vermiculites.

Vermiculite type	Interlayer	Octahedral cations	Tetrahedral cations	Coordinating anions
Ideal trioctahedral	$nH_2O,Mg_{z/}$ (z = 0.6–0.9)	$(Mg)_3$	Al _x Si _{4-x} $(x = 0.6-1.5)$	O ₁₀ (OH) ₂
Examples of triocta	ahedral vermic	ulites		
Kenya† Santa Olalla‡ Llano†	Mg _{0.32} Mg _{0.39} Ca _{0.0} Mg _{0.47}	$\begin{array}{c} Mg_{2.36}Fe_{0.48}^{3+}Al_{0.16} \\ Mg_{2.59}Fe_{0.24}^{3+}Al_{0.06}Fe_{0.03}^{2+}Ti_{0.08} \\ Mg_{2.81}Fe_{0.07}^{3+}Al_{0.11} \end{array}$	Al _{1.27} Si _{2.72} Al _{1.28} Si _{2.82} Al _{1.11} Si _{2.90}	$O_{10}(OH)_2$ $O_{10}(OH)_2$ $O_{10}(OH)_2$
Ideal dioctahedral	$nH_2O,Mg_{z/}$ (z = 0.6–0.9)	(Al) ₂	Al_xSi_{4-x} (x = 0.6–0.9)	O ₁₀ (OH) ₂
Examples of soil ve	ermiculites			
Sample A§ Sample B§ Sample C§	Na _{0.61} Na _{0.64} Na _{0.67}	$\begin{array}{c} Al_{1.44}Ti_{0.14}Fe_{0.16}^{3+}Mn_{0.05}Mg_{0.27}H_{0.03}\\ Al_{1.24}Ti_{0.18}Fe_{0.20}^{3+}Mn_{0.02}Mg_{0.35}H_{0.25}\\ Al_{1.12}Ti_{0.16}Fe_{0.29}^{3+}Mn_{0.03}Mg_{0.75}H_{0.19} \end{array}$	Al _{1.10} Si _{2.90} Al _{0.76} Si _{3.24} Al _{1.31} Si _{2.69}	$O_{10}(OH)_2$ $O_{10}(OH)_2$ $O_{10}(OH)_2$

[†] Brown et al. (1978).

[‡] De La Calle & Suquet (1988).

[§] Barshad & Kishk (1969).

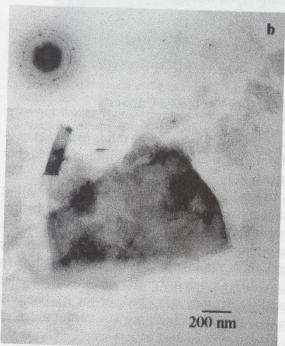


Fig. 16–2. Transmission electron micrographs of agate mortar–ground (3–5 min in water) vermiculites from Llano County, Texas: (a) white phlogopite derived and (b) brown biotite derived. Inserts are selective area diffraction patterns (courtesy of J.B. Dixon).

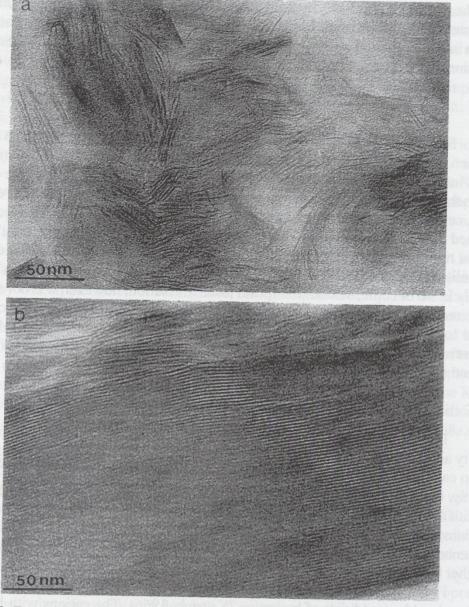


Fig. 16–3. Transmission electron microscopy images after octadecylammonium treatment. (a) extremely fine-grained dispersed particles of Jefferson vermiculite with interlayer spacing varying between 1.0 and 3.0 nm and (b) Llano vermiculite showing both large crystals with uniformly expanded interlayers and smaller particles with variable shape and interlayer spacing (2.2–2.5 nm spacing) (Vali & Hesse, 1992).

Table 2–2. Hydration energies of common cations.

Ion	Effective ionic radius [†] (r_{eff})	Ionic potential: $Z^2/r_{\rm eff}$	Enthalpy of hydration§	Hydrolysis constant¶
	nm		kJ mol ⁻¹	pK_h
Ca ²⁺	0.126	2.15	-1669	12.7
Mg^{2+} K^+	0.086	2.8	-1998	11.4
	0.165	0.45	-360	
Na ⁺	0.132	0.5	-444	14.5
Cs ⁺	0.188	0.4	-315	
Cu ²⁺	0.087	2.6	-2174	7.5
Fe ³⁺	0.069	6.3	-4491	2.2
Fe ²⁺	0.075	2.5	-2009	2.2
Co ²⁺	0.079	2.6	-2106	9.6
Zn^{2+}	0.088	2.6	-2106	9.6
Cd^{2+}	0.124	2.3	-1882	11.7
Pb ²⁺	0.143	2	-1556	7.8
$A1^{3+}$	0.067	6.9	-4774	5.1
Li ⁺	0.090	0.7	-559	13.8

[†] Shannon (1976).

[‡] Huheey (1974).

[§] Friedman and Krishnan (1973).

[¶] Yatsimirksii and Vasil'ev (1960).

Table 16–2. Name and structural formula of commonly used organic cations on the exchange complex of smectite or vermiculite.

Name	Abbreviation	Structure	
Dioctadecyldimethylammonium	DODMA ⁺	CH ₃	
Dioctagecy idiniciny faminomum	DODIVIA	$CH_3-N^+-(CH_2)_{17}-CH_3$	
		$CH_3-N^+-(CH_2)_{17}-CH_3$ $(CH_2)_{17}-CH_3)$	
Hexadecyltrimethylammonium	HDTMA ⁺	CH_3	
	tonik olitot olit ek bask	$CH_3 - N^+ - (CH_2)_{15} - CH_3$	
		CH_3	
Hexadecylpyridinium	HDPY ⁺	N^+ -(CH ₂) ₁₅ -CH ₃	
Trimethylphenylammonium	$TMPA^+$	CH_3	
		$CH_3 - N^+ - \bigcirc$	
		CH_3	
Tetramethylammonium	TMA ⁺	CH_3	
Tetrametry lammonant	IWA	$CH_3 - N^+ - CH_3$	
		CH ₃	
Decylammonium	C10	CH ₃ (CH ₂) ₉ NH ₃ ⁺	
Dodecylammonium	C12	CH ₃ (CH ₂) ₁₁ NH ₃ ⁺	

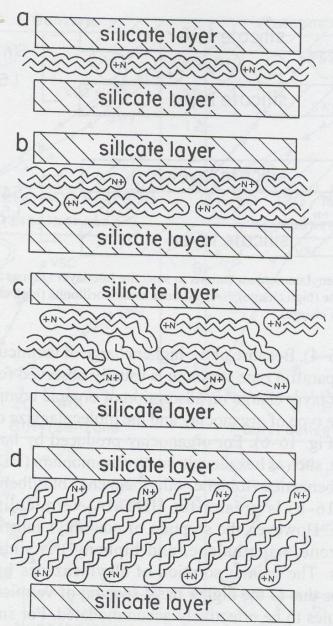


Fig. 16–4. Alkylammonium expansion of an expandable clay mineral: (a) monolayer (1.37 nm), (b) bilayer (1.77 nm), (c) pseudotrimolecular layer (2.17 nm), and (d) paraffin complex (>2.2 nm). (Jaynes & Boyd, 1991a).

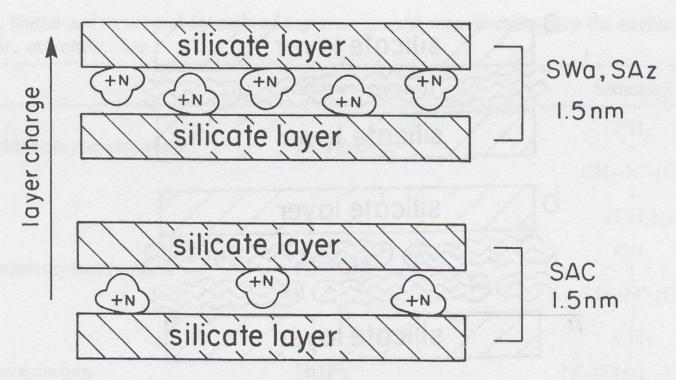


Fig. 16–5. Trimethylphenylammonium cations in smectite interlayer (Jaynes & Boyd, 1991b). SWa, Washington nontronite (high charge); SAz, Arizona montmorillonite (high charge); SAC, Wyoming montmorillonite (low charge).

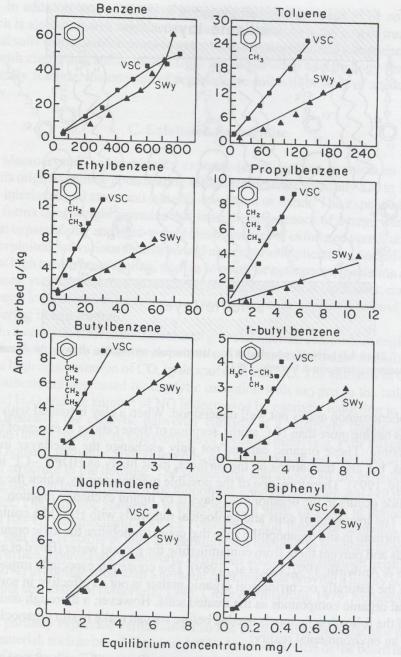


Fig. 16–6. Sorption of the organic compounds benzene, toulene, ethylbenzene, propylbenzene, butylbenzene, *t*-butylbenzene, napthalene, and biphenyl on HDTMA-VSC (South Carolina vermiculite) and HDTMA-SWy-1 (Wyoming montmorillonite). (Jaynes & Boyd, 1991a).