5.0 Silicates and silicate clay minerals, including poorly crystalline silicates **5.1 Silicates** (General)

- Volumetrically the most important mineral group,
- •Comprising over 90 % of the earth's crust,
- •Next to silicates are oxygen containing oxides (Al, Fe) and carbonates, sulfate, phosphates etc.,
- •Si Radius 0.34 Å (CN 4), 0.48 Å (CN 6),
- •O radius 1.27 Å (CN), 1.30 Å (CN 4),
- •Si CN 4 bond strong and 50 % ionic 50 % covalent,
- •Si and O a tetrahedron, fundamental building block of silicates.

Close packing representation of SiO₄ tetrahedron.

- Bridging (polymerization) by shared oxygen to another Si-tetrahedron.
- Several types of sharing O give rise to a diversity of structural configurations like C in organic matter.

COORDINATION OF COMMON ELEMENTS IN SILICATES^a

	Coordination Number	lon	lonic Radius (Å)	$\mathbf{R}_x:\mathbf{R}_o$
Z	4	Si⁴+	0.39	0.278
	4	Al ³⁺	0.51	0.364
Ŷ	6	Al ³⁺	0.51	0.364
	6	Fe ³⁺	0.64	0.457
	6	Mg ²⁺	0.66	0.471
	6	Ti ⁴⁺	0.68	0.486
	6	Fe ²⁺	0.74	0.529
	6	Mn ²⁺	0.80	0.571
X	8	Na ⁺	0.97 .	0.693
	8	Ca ²⁺	0.99	0.707
x	8–12	K+	1.33	0.950
	8–12	Ba ²⁺	1.34	0.957
	8–12	Rb ⁺	1.47	1.050

^a See Table 4.3 for a complete listing of ionic radii.

SILICATE CLASSIFICATION

- 1. Neso (island), or ORTHO (true) SILICATES with independent SiO_4 group (SiO_4)⁻⁴, Si/O=1/4,
- 2. SORO-SILICATES (group); two SiO₄ group are linked (SiO₇)⁻⁶ Si/O=1/3.5,
- 3. CYCLO-SILICATES (ring) more than two SiO4 group are linked $(Si_6O_{18})^{-12}(Si_xO_{3x})$, Si/O=1/3,

- 4. INO-SILICATES (thread), they are like CYCLO but open: a- one thread; b- two threads (SiO₃)⁻² or (Si₄O₁₁)⁻⁶ Si/O or 1/2.75,
- 5. PHYLLO-SILICATES (leaf, sheet) three O is shared Si₂O₅, Si/O=1/2.5,
- 6. TECTO-SILICATES (framework) SiO₂, Si/O=1/2.
- Al is next abundant element to Si it may in 4 CN and substitute Si or may in 6 CN and link tetrahedron.
- -In 6 CN they may be substituted with Fe, Mg; also Mn, Ti. (see Table).

SILICATES

Class	Arrangement of SiO ₄ tetrahedra (central Si ⁴⁺ not shown)	Unit composition	Mineral example
Nesosilicates	Oxygen	(SiO ₄) ⁻⁴	Olivine, (Mg, Fe)SiO ₄
Sorosilicates		(Si₂0 ₇) ^{−6}	Hemimorphite, Zn ₄ Si ₂ O ₇ (OH)•H ₂ O

SiO_4 are independent, cleavage direction are absent

1. NESO (island), or ORTHO (true) SILICATES

Portion of the idealized structure of olivine projected on (100). M1 and M2 are octahedral sites. The M1 octahedron is somewhat distorted in the real structure whereas M2 is regular

Examples:

Forsterite Mg₂ SiO₄ **Olivines: Fayelite Fe₂ SiO₄** Garnets: $Mg_{3}Al_{2}$ (SiO₄) (Fe, Mn) O may be substituted by OH⁻ Zircon: Zr SiO₄ Topaz: Al₂ SiO₄(F, OH)₂ **Spehene : CaTiO(SiO₄)**

SORO-SILICATES (Group; 2 SiO₄ groups are linked $(Si_2O_7)^{-6}$ Si/O = 1/3.5, Epidote: Ca(Fe³⁺, Al) Al₂O(SiO₄) (Si₂O₇) (OH)

Close packing representation of Si₂O₇ group

3. CYCLO-SILICATES (ring) more than two SiO₄ groups are linked $(Si_6O_{18})^{-12}(Si_xO_{3x})$, Si/O=1/3, Si₄O₁₅, Si_6O_{18}

Beryl: Be₆Al₂Si₆O₁₈ **Tourmaline** (Turamali, Sri Lanka):

(Na,Ca)(Li, Mg, Al)(Al,Fe,Mn)⁻⁶ (BO₃)₃(Si₆O₁₈)(OH)₄

Cyclosilicates (cont.)

Close packing representation of ring structures in the cvclosilicates. Si4 012 Si6018 **(b)** (c)

4. INO-SILICATES (thread), they are like CYCLO but open: a- one thread; b- two threads (SiO₃)⁻² or (Si₄O₁₁)⁻⁶ Si/O=1/3 or 1/2.75,

Pyroxenes = single thread

Amphiboles = double threads

- Many properties are similar.
- "c" dimension is similar (approx. 5.2 Å), because of the double thread "b" dimension of amphiboles is roughly two times than pyroxenes.
- OH group only present in amphiboles, therefore, their specific density and refractive index is slightly lower than pyroxenes.
- Amphiboles are generally acicular.
- Pyroxenes form magma at early stage, they may be converted to amphiboles. Amphiboles are easy to weather.

<u>Pyroxene general formula: XYZ₂O₆.</u>

Example: Augite XYZ₂O₆ (Ca,Na) (Mg, Fe, Al) (Si,Al)₂O₆

Amphiboles: W₀₋₁X₂Y₅Z₈O₂₂(OH,F)₂

Example: Hornblende (CaNa)₂₋₃(MgFeAl)₅Si₆(SiAl)₂O₂₂(OH)₂

5. PHYLLO-SILICATES (leaf, sheet) three O is shared Si₂O₅, Si/O=2.5,

- Low specific density,
- One prominent cleavage,
- Contains OH group,
- Important part of soil clays.

6. TECTO-SILICATES (framework) SiO₂, Si/O=1/2.

- Nearly three quarter of the earth's crust made of these minerals (three dimensional framework),
- Each Oxygen in tetrahedron is shared with neighboring tetrahedra.

Examples:

Quartz (quartz, tridymite, cristobalite, opal) Opal SiO₂ nH₂O

Feldspars: K-feldspars: Microcline KAlSi₃O₈ Orthoclase Sanidine Plagioclase: Albite: Na AlSi₃O₈ Anorthite: CaAl₂Si₂O₆

Feldspatoids

Scapolite Series

Zeolites

- Structures of some polymorphs of SiO₂,
- (a) Tetrahedron layers in high tridymite projected onto (0001).
- (b) portion of the high cristobalite structure projected onto (111).