3.0 Atomic Bonding

Periodic Table of the Elements

Lanthanide series	58 Ce	⁵⁹ Pr	⁶⁰ Nd	Pm	⁶² Sm	Eu	Gd 4	⁶⁵ Tb	66 Dy	67 Ho	Er	⁶⁹ Tm	70 Yb	71 Lu
Actinide series	⁹⁰ Th ≺	91 Pa 6	92 U	93 Np	⁹⁴ Pu	95 Am	96 Cm	97 Bk	⁹⁸ Cf	⁹⁹ Es	¹⁰⁰ Fm	¹⁰¹ ∙ Md	¹⁰² No	103 • Lr

Metallic elements

Nonmetallic elements

.1

The Periodic Table of Elements.

Active	metals -	`										~		— Nonn	netals —		8A 18
1 H 1.0079	2A 2											3A 13	4A 14	5A 15	6A 16	7 A 17	2 He 4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.81	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.998403	10 Ne 20.179
11 Na 22.98977	12 Mg 24.305	3B 3	4B 4	5B 5	6B 6	— Tran 7B 7	sition m 8	etals — 8B 9	10	1 B 11	2B 12	13 Al 26.98154	14 Si 28.0855	15 P 30.97376	16 S 32.06	17 Cl 35.453	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 SC 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.996	25 Mn 54.9380	26 Fe 55.847	27 Co 58.9332	28 Ni 58.69	29 Cu 63.546	30 Zn 65.38	³¹ Ga 69.72	32 Ge 72.61	33 As 74.9216.	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.22	41 Nb 92.9064	42 Mo 95.94	43 TC (98)	44 Ru 101.07	45 Rh 102.9055	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.41	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 126.9045	54 Xe 131.29
55 Cs 132.9054	56 Ba 137.33	57 *La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.85	75 Re 186.207	76 Os 190.2	77 Ir 192.22	78 Pt 195.08	79 Au 196.9665	80 Hg 200.59	81 TI 204.383	82 Pb 207.2	83 Bi 208.9804	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.0254	89 †Ac 227.0278	104 Rf (261)	105 Ha (262)	106 Unh (263)	107 Uns (262)		109 Une (266)									
*La	anthar	nide se	ries	58 Ce 140.12	59 Pr 140.9077	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.9254	66 Dy 162.50	67 Ho 164.9304	68 Er 167.26	69 Tm 168.9342	70 Yb 173.04	71 Lu 174.967
+Actinide series			90 Th 232.0381	91 Pa 231.0359	92 U 238.0289	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

ATOMIC BONDING

```
7s: \uparrow \downarrow<br/>6p: \uparrow \downarrow6p: \uparrow \downarrow<br/>\uparrow \downarrowf \downarrow<br/>f \downarrow
                                                         3s: \uparrow \downarrow
2p: \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow
2s: \uparrow \downarrow
Energy —
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        n = 2 (L shell) 8 electrons
                                                                        1s: ↓↓
                                                                                                                                                                                                                                                                                                                                                                                                                                                   n = 1 (K shell) 2 electrons
```

Relative energies of electrons in various orbitals. Each arrow denotes a single electron and its relative sense of spin. All electron configurations must be built up in order of increasing energy levels.

Atomic					First (E ₁),
Number	Element	E_1	E_2	<i>E</i> ₃	Second (E_2)
2	He	2371.91	5246.74		and Third (E_3)
3	Li	520.07	7296.90	11811.43	ionization
4	Be	899.14	1756.86	14844.83	IOIIIZatioII
5	B	800.40	2426.72	3658.91	energies of
6	С	1086.17	2352.24	4619.14	elements
7	N	1402.06	2856.84	4577.30	through stomic
8	Ο	1313.78	3391.55	5301.13	unough atomic
9	F	1681.13	3375.23	6045.88	number 19.
10	Ne	2080.28	3963.08	6276.00	
11	Na	495.80	4564.74	6911.97	
12	Mg	737.64	1450.17	7732.03	
13	Al	577.39	1816.27	2744.29	
14	Si	786.17	1576.53	3228.79	
15	Ρ	1062.74	1896.19	2909.97	NOTE · All data
16	S	999.56	2259.36	3376.49	ano in kilo. Ioulo
17	Cl	1255.20	2296.60	3850.77	are in kilo Jouis
18	Ar	1520.47	2665.21	3946.77	per mole (kJ
19	K	418.82	3096.38	4602.40	mol ⁻¹)

Valance states of the elements listed in order of progressive filling of 1s, 2s, 2p, 3s, 3p, 4p, and 5p orbitals. Filled squares denote most common valance state of ions in minerals. Shaded squares denote less common but known-valance states.

SHAPE OF THE ATOMS

From the sub-microscopical point of view they are considered to be spherical. Atoms orbitals show that the shape of atoms is complicated. STABLE STATE, half or completely filled shells and sub-shells may be spherical.

SIZE

Size is important for understanding of substitution. Size depends on the electron orbitals and it is not fixed.

We use the concept of effective radius rather than one fixed radius.

Interatomic distance can be measured by Xray. To measure the radius of an element one of the radius interatomic configuration must be known.

RADIUS depends the outermost electrons S has 10 times higher or lower RADIUS depending on the electron configuration.

Closely packed arrangement of rigid, equal-sized spheres is typical of many elements. The interatomic distance *d* equals an atomic diameter 2*r*

Relative ionic and atomic radii for various valence states of sulfur. Size varies in proportion to number of outer electrons, being greatest for S²⁻ and least for S⁶⁺.

The problem of determining the effective radius is complicated further by the fact that ionic radius depends on coordination number.

COORDINATION NUMBER

The number of closest neighbors to which the ion is bonded.

Variation of effective ionic radius of common cations with coordination number. Effective radius of an ion increases as its number of nearest neighbors increases.

Variation of effective ionic radius of common anions with coordination number. Rate of radius increase is less than for cations.

Ion	CN*	Radius (nm)	Example	Ion	CN*	Radius (nm)	Example			
O ²⁻	2	0.127	Quartz (SiO ₂)	$\frac{1}{Ca^{2+}}$	8	0.120	Fluorite (CaF_2)			
•	3	0.128	Albite (NaSi ₃ AlO ₈)		12	0.143	Perovskite (CaTiO ₃)			
	4	0.130	Forsterite (Mg_2SiO_4)	Ti ⁴⁺	6	0.069	Rutile (TiO_2)			
	6	0.132	Periclase (MgO)	Mn^{2+}	4	0.061	Hausmannite ($MnMn_2O_4$)			
F ¹ -	4	0.123	Fluorite (CaF ₂)	14111		0.091	Pyrochroite (Mn(OH) ₂)			
	6	0.125	Villiaumite (NaF)	Mn ³⁺	6(I S [†])	0.066	- <u> </u>			
Na ¹⁺	6	0.110	Albite (NaSi ₃ AlO ₈)	14111	6(HS)	0.000	Groutite (MnO(OH))			
	9	0.140	Nepheline (NaSiAlO ₄)	Ee^{2+}	Δ(HS)	0.071	Staurolite (Al-H Si Fe-O-)			
Mg ²⁺	4	0.066		1.6	4(IIS) 6(IS)	0.071				
•	6	0.080	Forsterite (Mg ₂ SiO ₄)		6(HS)	0.005	$Favalite (Fe_SiQ_i)$			
Al ³⁺	4	0.047	Anorthite (CaSi ₂ Al ₂ O ₈)	E-3+		0.057	Cronstedtite (Ee (OH) SiFeO)			
	5	0.056	Andalusite (AlAlOSiO ₄)	re	4(IS)	0.057	$Cronsteame (re_3(OII)_4SireO_5)$			
	6	0.061	Kyanite (Al ₂ OSiO ₄)		O(LS)	0.003	Hematite (Fe Ω)			
Si ⁴⁺	4	0.034	Quartz (SiO ₂)		0(115)	0.075	Tiematice (1 c203)			
	6	0.048	Stishovite (SiO ₂)	SOURCE:	Data from W	hittaker, E. J. W	., and Muntus, R., 1970. Ionic radii fo			
S ²⁻	4	0.156	Sphalerite (ZnS)	use in geochemistry. Geochimica Cosmochimica Acta 34:945-956.						
	6	0.172	Pyrite (FeS ₂)	NOTE: Al	ll radii are in n	amometers (1 nr	n = 10 A).			
K ¹⁺	9	0.163	Microcline (KSi ₃ AlO ₈)	*CN = co **HS = hi	ordination nun	nber.				
	12	0.168	Muscovite (KAl ₂ (OH) ₂ Si ₃ AlO ₁₀	$^{\dagger}LS = low$	-spin state.					

Selected ionic radii of most abundant ions in rock forming minerals

a) Octahedral or 6 coordination of Z ions about an X ion. Rx: Rz=
 0.732-0414; b) limiting condition for octahedral coordination.

a) Cubic or 8 coordination of Z ions about an X ion. Rx:Rz>
0.732; b) limiting conditions for cubic coordination.

(a) Tetrahedral or 4 coordination of Z
ions about an X ion. Rx:Rz=0,4140225. (b) limiting conditions for
tetrahedral coordination.

(a) Triangular or 3 coordination of Z ions about an X ion Rx:Rz=
0225 - 0.155. (b) limiting conditions for triangular coordination.

$$\cos 30^{\circ} = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{2} x}$$
$$\frac{1}{2} + \frac{1}{2} x = \frac{\frac{1}{2}}{\cos 30^{\circ}} = \frac{\frac{1}{2}}{0.8660} = 0.5774$$
$$\frac{1}{2} x = 0.5774 - 0.50 = 0.0774$$
$$x = 0.155$$
(b)

The size of more important atoms and ions drawn to scale (Å).

CHEMICAL BONDING BETWEEN ATOMS AND IONS

- Elements that have a tendency to acquire electrons rather than to lose them are said to be *electronegative*.
- Elements that tend to readily lose electrons are said to be *electropositive*.
- Bond strength fundamentally related to bond type.

1. IONIC BOND:

Chemical bonds between strongly electronegative and strongly electropositive elements are <u>IONIC</u>. Examples for ionic bond are: NaCl, KCl. The force of attraction is electrostatic

Hypothetical one-dimensional crystal of NaCl illustrating Madelung contribution by ordered array of ions. This array is more stable than an equivalent number of isolated ion pairs.

CHARACTERISTICS (Ionic Bond):

- Highly symmetrical, brittle.
- Poor electrical conductivity.
- Ionic form in H₂O conducts electrons.
- High charge and oxygen (CaO), generally form strong ionic bond.
- Interionic distance.
- CN number.

Ionic bond strength can be approximated by dividing the cation valance by the number of close, equally distant number to which cation is bonded.

A general relationship exist between the strength of the chemical bonds in a mineral and the mineral hardness.

The properties of solubility and melting point, and Resistant weathering are also related bond strength (example is quartz; CN of Si and O).

Second Contractor

2. COVALLENT BOND:

Chemeical bonds between elements having little or no difference in their electronegativities are covalent (C diamond, graphitemetal Si, diatomic gas molecules H₂, F₂, Cl₂, O₂, N₂).

Share electrons.

CHARACTERISTICS:

- Shorter interatomic distance,
- Overlap of atomic orbitals.

Most minerals have mixture of ideal ionic and covalent models. Average bond strength determines the hardness.

Electron configurations for F atoms that combine to form a stable F_2 molecules. A $2p^6$ Ne (neon) configuration is achieved by sharing a single electron in the $2p_z$ orbital. Note opposite spin of $2p_z$ electrons required for covalent bonding.

Hardness of some common minerals and synthetic abrasives versus bond strength per unit volume. Data converted to SI units. (After Bundy, F. P., 1974. Super-hard materials. Scientific **American** 231:64)

The Mohs hardness scale

Melting point vs. interionic distance in ionic-bonded compounds

Compound	Interionic	М.Р	Compound	Interionic	М.Р
	Distance (X)	(°C)		Distance (X)	(°C)
NaF	2.31	988	SrO	2.57	2430
NaCl	2.81	801	BaO	2.76	1923
N a B r	2.98	755			
NaI	3.23	651	LiF	2.01	842
			NaF	2.31	988
MgO	2.10	2800	KF	2.67	846
CaO	2.40	2580	RbF	2.82	775

Data from Handbook of Chem. and Phys., 52nd ed., Chem. Rubber Publishing Co., 1972

Hardness vs. interionic distance and charge in ionic-bonded compounds

Compound	Interionic	Hardness	Compound	Interionic	Hardness
	Distance (X)	(Mohs)		Distance (X)	(Mohs)
BeO	1.65	9.0	$\mathbf{N} \mathbf{a}^{+} \mathbf{F}^{-}$	2.31	3.2
MgO	2.10	6.5	$\mathbf{M} \mathbf{g}^{2+} \mathbf{O}^{-2}$	2.10	6.5
CaO	2.40	4.5	$Sc^{3+}N^{-3}$	2.23	7-8
SrO	2.57	3.5	T i ⁴⁺ C ⁻⁴	2.23	8-9
BaO	2.76	3.3			

Data from Crystal Chemistry, R. C. Evans. Cambrdige University Press, 1952.

3. METALIC BOND:

Chemical bonds bonding electrons are highly delocalized free to move from one atom to another.

Their inner electrons held together by an "interatomic glues" of loosely bonded outer electrons.

CHARACTERISTICS:

- Small number of outer electrons not shared.
- Low first ionization energies (see Table).
- High thermal and electrical conductivity.
- Low cohesive energy.
- Soft, low melting point, ductile.

Potential energy well for Na metal bounded by crystal surfaces. Internal subwells indicate positions of positively charged atom cores and localized electrons in the 1s, 2s, and 2p bands. The 3s band is the conduction band when voltage is applied across the metal.

4. MOLECULAR BOND: (Van der Waals)

- At any given instant, each atom will have small bur real electric dipole moment, as a result of higher electron density on one side of the nucleus. (exm. Graphite).
- **Small contribution to the bond.**

5. Hydrogen BOND:

- Is an electrostatic bond between a positively charged hydrogen ion an a negatively charged ion, such as O²⁻ or N³⁻.
- **Small contribution to the bond.**

FIG. 4.1 Closest packing of like-sized spheres (**C.N.** = 12). (a) Monolayer *A* of same size spheres showing six spheres in contact with a central sphere producing two types of voids. (b) Addition of another layer over *B* voids. (c) Addition of a third layer over *C* voids. (d) Oblique vertical view of packing in (c).

